Mise à jour de la bibliothèque MeasureUnit

This commit is contained in:
anschrammh 2020-01-29 20:04:30 +01:00
parent 31005dad7f
commit af0a92f4b6
3 changed files with 151 additions and 105 deletions

View File

@ -56,6 +56,100 @@ MeasureUnit::~MeasureUnit()
void MeasureUnit::run() void MeasureUnit::run()
{ {
switch(_state)
{
case MEASURING:
_adc.startSample(_channel);
if(_channel == 0) //Calcule du courant
{
if(_adc.isSampleReady())
{
_tension = _adc.getSampleVoltage();
_courant = _tension / (double) _precResistor;
#ifdef DEBUG
Serial.print("Tension prec : ");Serial.println(_tension);
#endif
_channel++;
}
}
else //Calcule des niveaux de tensions
{
if(_adc.isSampleReady())
{
_resistanceMap[_channel-1] = _adc.getSampleVoltage();
#ifdef DEBUG
Serial.print("Tension thermistances : ");Serial.println(_resistanceMap[_channel-1]);
#endif
_channel++;
}
}
//Fin de la partie d'acquisition
if(_channel == _thermistorCount)
{
_state = COMPUTING;
_resistanceMap[_channel-1] = _adc.getAdcSetting().getVref();
}
break;
case COMPUTING :
//Ici nous calculons les temperatures
for(int i(_thermistorCount-1); i > 0; i--)
{
//Calcule de delta :
_resistanceMap[i] -= _resistanceMap[i-1];
#ifdef DEBUG
Serial.printf("Debug voltage delta : %u -> ",i);Serial.println(_resistanceMap[i]);
#endif
}
//Ne pas oublier de déduire la chute de tension de la resistance de precision pour la première thermistance
_resistanceMap[0] -= _tension;
#ifdef DEBUG
Serial.printf("Debug voltage delta : 0 -> ");Serial.println(_resistanceMap[0]);
#endif
for(int i(0); i < _thermistorCount; i++)
{
//3) Nous en déduisons la résistance
//Serial.print("Resistance ");Serial.print(i);Serial.print(" ");Serial.println(_resistanceMap[i]);
_resistanceMap[i] /= _courant;
//4) Nous en déduisons la temperature
_temperatures[i] = computeTemperature(_thermistorSetting.getBeta(), _resistanceMap[i], _thermistorSetting.getRat25());
//On effectue un étalonnage
if(_triggerLevelOff)
{
double averageTemp(0);
//We reset the offset
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetMap[i] = 0;
}
for(int i(0); i < _thermistorCount; i++)
{
averageTemp += _temperatures[i];
}
averageTemp /= (double)_thermistorCount;
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetMap[i] = averageTemp - _temperatures[i];
}
_triggerLevelOff = false;
}
_temperatures[i] += _rOffsetMap[i] + _globalOffset;
#ifdef DEBUG_TEMP
Serial.print("Temperature ");Serial.print(i);Serial.print(" : ");Serial.println(_temperatures[i]);
#endif
}
_state = MEASUREMENT_READY;
break;
}
if(_offsetCounter < _offsetComputeIte && isMeasurementReady()) if(_offsetCounter < _offsetComputeIte && isMeasurementReady())
{ {
//We reset the offset array //We reset the offset array
@ -238,105 +332,17 @@ double *MeasureUnit::getROffsetMap()
return _rOffsetMap; return _rOffsetMap;
} }
void MeasureUnit::startTemperatureMeasurement() boolean MeasureUnit::startTemperatureMeasurement()
{ {
switch(_state)
if(_state == IDLING)
{ {
case IDLING:
_state = MEASURING; _state = MEASURING;
_channel = 0; _channel = 0;
break; return true;
case MEASURING:
_adc.startSample(_channel);
if(_channel == 0) //Calcule du courant
{
if(_adc.isSampleReady())
{
_tension = _adc.getSampleVoltage();
_courant = _tension / (double) _precResistor;
#ifdef DEBUG
Serial.print("Tension prec : ");Serial.println(_tension);
#endif
_channel++;
}
}
else //Calcule des niveaux de tensions
{
if(_adc.isSampleReady())
{
_resistanceMap[_channel-1] = _adc.getSampleVoltage();
#ifdef DEBUG
Serial.print("Tension thermistances : ");Serial.println(_resistanceMap[_channel-1]);
#endif
_channel++;
}
} }
//Fin de la partie d'acquisition return false;
if(_channel == _thermistorCount)
{
_state = COMPUTING;
_resistanceMap[_channel-1] = _adc.getAdcSetting().getVref();
}
break;
case COMPUTING :
//Ici nous calculons les temperatures
for(int i(_thermistorCount-1); i > 0; i--)
{
//Calcule de delta :
_resistanceMap[i] -= _resistanceMap[i-1];
#ifdef DEBUG
Serial.printf("Debug voltage delta : %u -> ",i);Serial.println(_resistanceMap[i]);
#endif
}
//Ne pas oublier de déduire la chute de tension de la resistance de precision pour la première thermistance
_resistanceMap[0] -= _tension;
#ifdef DEBUG
Serial.printf("Debug voltage delta : 0 -> ");Serial.println(_resistanceMap[0]);
#endif
for(int i(0); i < _thermistorCount; i++)
{
//3) Nous en déduisons la résistance
//Serial.print("Resistance ");Serial.print(i);Serial.print(" ");Serial.println(_resistanceMap[i]);
_resistanceMap[i] /= _courant;
//4) Nous en déduisons la temperature
_temperatures[i] = computeTemperature(_thermistorSetting.getBeta(), _resistanceMap[i], _thermistorSetting.getRat25());
//On effectue un étalonnage
if(_triggerLevelOff)
{
double averageTemp(0);
//We reset the offset
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetMap[i] = 0;
}
for(int i(0); i < _thermistorCount; i++)
{
averageTemp += _temperatures[i];
}
averageTemp /= (double)_thermistorCount;
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetMap[i] = averageTemp - _temperatures[i];
}
_triggerLevelOff = false;
}
_temperatures[i] += _rOffsetMap[i] + _globalOffset;
#ifdef DEBUG_TEMP
Serial.print("Temperature ");Serial.print(i);Serial.print(" : ");Serial.println(_temperatures[i]);
#endif
}
_state = MEASUREMENT_READY;
break;
}
} }
void MeasureUnit::levelAsyncTemperaturesOff() void MeasureUnit::levelAsyncTemperaturesOff()

View File

@ -23,7 +23,7 @@ class MeasureUnit
//Async methods //Async methods
enum STATE {IDLING, MEASURING, COMPUTING, MEASUREMENT_READY}; enum STATE {IDLING, MEASURING, COMPUTING, MEASUREMENT_READY};
void startTemperatureMeasurement(); boolean startTemperatureMeasurement();
boolean isMeasurementReady(); boolean isMeasurementReady();
double *getAsyncTemperatures(); double *getAsyncTemperatures();
void levelAsyncTemperaturesOff(); void levelAsyncTemperaturesOff();

View File

@ -6,6 +6,7 @@
* 17/12/2019 * 17/12/2019
*/ */
#include <Wire.h> #include <Wire.h>
#include <WiFi.h>
#include <RTClib.h> #include <RTClib.h>
#include <Adafruit_GFX.h> #include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h> #include <Adafruit_SSD1306.h>
@ -20,11 +21,46 @@
uint8_t analogInput[] = {0,1,2,3,4,5,6,7}; uint8_t analogInput[] = {0,1,2,3,4,5,6,7};
double *tempArray = NULL; double *tempArray = NULL;
/*
* Liste des offsets trouvés
* | -0.49 | 0.36 | -0.29 | 0.38 | 0.44 | -0.35 | -0.21 | 0.14 |
* | -0.72 | 0.07 | -0.52 | -0.01 | 2.38 | -0.65 | -0.44 | -0.11 |
* | -0.99 | -0.06 | -0.74 | 2.24 | 0.73 | -0.86 | -0.68 | 0.35 |
*/
void downlinkHandler(u1_t length, u1_t dataBeg, u1_t *data)
{
Serial.println("Downlink received : ");
for(uint8_t i(0); i < length; i++)
{
Serial.print(data[dataBeg + i],HEX);
}
Serial.println();
//Action en fonction de l'octet de commande
switch(data[0])
{
case 0x01://Mise à jour de l'heure
//Octets suivants:
//2 jour 3 mois 4 année 5 heures 6 minutes
if(length == 6)
{
Serial.printf("dd: %u, m: %u, yyyy: %d, hh: %u, mm: %u\n", data[2], data[3], data[4]+2000, data[5], data[6]);
}
else
Serial.println("Action réglage RTC : paramètres insuffisants");
break;
default:
Serial.println("Action inconnnue");
}
}
//Objet de calcule de la temperature //Objet de calcule de la temperature
//ThermistorSetting thermistorSetting(3380, 10000); //ThermistorSetting thermistorSetting(3380, 10000);
ThermistorSetting thermistorSetting(3650, 470); ThermistorSetting thermistorSetting(3650, 470);
//AdcSetting adcSetting(3300.0, 12, 310, 3); //AdcSetting adcSetting(3300.0, 12, 310, 3);
AdcSetting adcSetting(3285, 15, 6, 10); AdcSetting adcSetting(3320, 15, 6, 10);
Ads1115 adc; Ads1115 adc;
MeasureUnit measureUnit(analogInput, 8, 990, thermistorSetting, adc); MeasureUnit measureUnit(analogInput, 8, 990, thermistorSetting, adc);
//MeasureUnit measureUnit(analogInput, 8, 99, thermistorSetting, adc); //MeasureUnit measureUnit(analogInput, 8, 99, thermistorSetting, adc);
@ -46,10 +82,6 @@ unsigned long _time(0);
void os_getArtEui (u1_t* buf) { } void os_getArtEui (u1_t* buf) { }
void os_getDevEui (u1_t* buf) { } void os_getDevEui (u1_t* buf) { }
void os_getDevKey (u1_t* buf) { } void os_getDevKey (u1_t* buf) { }
void onEvent(ev_t ev)
{
}
static u1_t NWKSKEY[16] = { 0x1F, 0x9E, 0xE2, 0x7A, 0xC8, 0xBA, 0xE8, 0xEA, 0xF5, 0xC2, 0x5E, 0x47, 0x5D, 0xE0, 0x77, 0x55 }; static u1_t NWKSKEY[16] = { 0x1F, 0x9E, 0xE2, 0x7A, 0xC8, 0xBA, 0xE8, 0xEA, 0xF5, 0xC2, 0x5E, 0x47, 0x5D, 0xE0, 0x77, 0x55 };
static u1_t APPSKEY[16] = { 0x3B, 0x89, 0x86, 0x96, 0xBB, 0xAA, 0x38, 0x1E, 0x1F, 0xC4, 0xAD, 0x03, 0xEF, 0x3F, 0x56, 0x12 }; static u1_t APPSKEY[16] = { 0x3B, 0x89, 0x86, 0x96, 0xBB, 0xAA, 0x38, 0x1E, 0x1F, 0xC4, 0xAD, 0x03, 0xEF, 0x3F, 0x56, 0x12 };
@ -63,12 +95,20 @@ void setup() {
Serial.begin(115200); Serial.begin(115200);
delay(1000); delay(1000);
Serial.println("Start setup"); Serial.println("Start setup");
WiFi.mode(WIFI_OFF);
pinMode(PUSH_BUTTON, INPUT); pinMode(PUSH_BUTTON, INPUT);
//Radio init //Partie concernant l'initialisation de la radio
#ifdef RADIO_ENABLED #ifdef RADIO_ENABLED
radio.init(); radio.init();
radio.setTTNSession(0x1, DEVADDR, NWKSKEY, APPSKEY); radio.setTTNSession(0x1, DEVADDR, NWKSKEY, APPSKEY);
radio.setRadioEUChannels(); radio.setRadioEUChannels();
/*
* La directive setMCUClockError() permet de laisser une fenêtre plus grande pour le slot de
* réception (Downlink). En effet ce slot doit durer 2 secondes et il peut durer moins en raison
* d'imprécisions d'horloge.
*/
radio.setMCUClockError();
radio.setDownlinkHandler(&(downlinkHandler));
#endif #endif
//Adc init //Adc init
adc.setAdcSetting(adcSetting); adc.setAdcSetting(adcSetting);
@ -104,7 +144,6 @@ void loop() {
//On peut tester si la conversion est terminée avec : //On peut tester si la conversion est terminée avec :
//if(measureUnit.isMeasurementReady()) //if(measureUnit.isMeasurementReady())
measureUnit.run();
//measureUnit.getAsyncTemperatures() renvoie NULL si la recupération de la température n'est pas terminée //measureUnit.getAsyncTemperatures() renvoie NULL si la recupération de la température n'est pas terminée
tempArray = measureUnit.getAsyncTemperatures(); tempArray = measureUnit.getAsyncTemperatures();
@ -162,4 +201,5 @@ void loop() {
#ifdef RADIO_ENABLED #ifdef RADIO_ENABLED
radio.run(); radio.run();
#endif #endif
measureUnit.run();
} }