projet3_temperature/lib/MeasureUnit/MeasureUnit.ino
2020-01-29 20:04:30 +01:00

206 lines
5.8 KiB
C++

/**
* Cet exemple correspond à l'application de test de la bibliothèque MeasureUnit qui
* permet de calculer la température qui est fonction de la résistance d'une matrice de thermistance
*
* Anatole SCHRAMM-HENRY
* 17/12/2019
*/
#include <Wire.h>
#include <WiFi.h>
#include <RTClib.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#include "MeasureUnit.h"
#include "PayloadFormatter.h"
#include "Ads1115.h"
#include "LoRaRadio.h"
#define RADIO_ENABLED
#define PUSH_BUTTON 0
uint8_t analogInput[] = {0,1,2,3,4,5,6,7};
double *tempArray = NULL;
/*
* Liste des offsets trouvés
* | -0.49 | 0.36 | -0.29 | 0.38 | 0.44 | -0.35 | -0.21 | 0.14 |
* | -0.72 | 0.07 | -0.52 | -0.01 | 2.38 | -0.65 | -0.44 | -0.11 |
* | -0.99 | -0.06 | -0.74 | 2.24 | 0.73 | -0.86 | -0.68 | 0.35 |
*/
void downlinkHandler(u1_t length, u1_t dataBeg, u1_t *data)
{
Serial.println("Downlink received : ");
for(uint8_t i(0); i < length; i++)
{
Serial.print(data[dataBeg + i],HEX);
}
Serial.println();
//Action en fonction de l'octet de commande
switch(data[0])
{
case 0x01://Mise à jour de l'heure
//Octets suivants:
//2 jour 3 mois 4 année 5 heures 6 minutes
if(length == 6)
{
Serial.printf("dd: %u, m: %u, yyyy: %d, hh: %u, mm: %u\n", data[2], data[3], data[4]+2000, data[5], data[6]);
}
else
Serial.println("Action réglage RTC : paramètres insuffisants");
break;
default:
Serial.println("Action inconnnue");
}
}
//Objet de calcule de la temperature
//ThermistorSetting thermistorSetting(3380, 10000);
ThermistorSetting thermistorSetting(3650, 470);
//AdcSetting adcSetting(3300.0, 12, 310, 3);
AdcSetting adcSetting(3320, 15, 6, 10);
Ads1115 adc;
MeasureUnit measureUnit(analogInput, 8, 990, thermistorSetting, adc);
//MeasureUnit measureUnit(analogInput, 8, 99, thermistorSetting, adc);
//Objet de création des trames LoRa
PayloadFormatter payloadFormatter(2,4);
RTC_DS3231 rtc;
DateTime payloadDate;
TwoWire sc(1);
Adafruit_SSD1306 display(128,64,&sc, 16);
boolean data(false);
uint8_t *payload(NULL), _timeCounter(0), size(0), _channel(0);
boolean calibrer(false);
unsigned long _time(0);
/*
* Radio Part
*/
void os_getArtEui (u1_t* buf) { }
void os_getDevEui (u1_t* buf) { }
void os_getDevKey (u1_t* buf) { }
static u1_t NWKSKEY[16] = { 0x1F, 0x9E, 0xE2, 0x7A, 0xC8, 0xBA, 0xE8, 0xEA, 0xF5, 0xC2, 0x5E, 0x47, 0x5D, 0xE0, 0x77, 0x55 };
static u1_t APPSKEY[16] = { 0x3B, 0x89, 0x86, 0x96, 0xBB, 0xAA, 0x38, 0x1E, 0x1F, 0xC4, 0xAD, 0x03, 0xEF, 0x3F, 0x56, 0x12 };
static u4_t DEVADDR = 0x260113D3;//0x03FF0001 ; // <-- Change this address for every node!
u1_t dio[3] = {26,33,32};
PinMap pinMap(18, LMIC_UNUSED_PIN, 14, dio);
LoRaRadio radio(pinMap);
void setup() {
Serial.begin(115200);
delay(1000);
Serial.println("Start setup");
WiFi.mode(WIFI_OFF);
pinMode(PUSH_BUTTON, INPUT);
//Partie concernant l'initialisation de la radio
#ifdef RADIO_ENABLED
radio.init();
radio.setTTNSession(0x1, DEVADDR, NWKSKEY, APPSKEY);
radio.setRadioEUChannels();
/*
* La directive setMCUClockError() permet de laisser une fenêtre plus grande pour le slot de
* réception (Downlink). En effet ce slot doit durer 2 secondes et il peut durer moins en raison
* d'imprécisions d'horloge.
*/
radio.setMCUClockError();
radio.setDownlinkHandler(&(downlinkHandler));
#endif
//Adc init
adc.setAdcSetting(adcSetting);
//measureUnit.setGlobalTempOffset(-17);
_time = millis();
if(rtc.begin())Serial.println("RTC Ok!");
else Serial.println("RTC Fail!");
sc.begin(4, 15);
if(display.begin(SSD1306_SWITCHCAPVCC,0x3C))
{
Serial.println("SCREEN Ok!");
display.clearDisplay();
display.setTextColor(WHITE);
display.setCursor(0,15);
display.setTextSize(2);
display.print("LES ALEAS DU DIRECT");
display.display();
}
else Serial.println("SCREEN Fail!");
display.startscrollleft(0,16);
Serial.println("End setup");
measureUnit.init();
Serial.println("| T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 |");
}
void loop() {
//Version asynchrone :
measureUnit.startTemperatureMeasurement();
//On peut tester si la conversion est terminée avec :
//if(measureUnit.isMeasurementReady())
//measureUnit.getAsyncTemperatures() renvoie NULL si la recupération de la température n'est pas terminée
tempArray = measureUnit.getAsyncTemperatures();
if(tempArray != NULL)
{
Serial.print("|");
for(int i(0); i < 8; i++)
{
if(i != 7)
{
Serial.print(" ");Serial.print(tempArray[i],2);Serial.print(" |");
}
else
{
Serial.print(" ");Serial.print(tempArray[i],2);Serial.print(" |");
}
}
//On affiche la trame associée:
payloadFormatter.startSession(1);
payloadDate = rtc.now();
size = payloadFormatter.buildPayload(&payload, &payloadDate,tempArray);
if(size != 0)
{
//Serial.print("LoRa packet --> ");Serial.print("size : ");Serial.print(size);Serial.println(" bytes");
for(int i(0); i < size; i++)
{
payload[i] <= 0x0F ? Serial.print("0") : Serial.print(""); Serial.print(payload[i], HEX); Serial.print(" ");
}
Serial.printf("|%u-%u-%u %u:%u \n", payloadDate.day(),payloadDate.month(),payloadDate.year(),payloadDate.hour(),payloadDate.minute());
}
else
Serial.print("Failed to build LoRa packet");
payloadFormatter.endSession();
#ifdef RADIO_ENABLED
if(_timeCounter == 30 && size != 0)
{
_timeCounter = 0;
Serial.printf("Sending data\n");
radio.send(1, payload, size);
}
_timeCounter++;
#endif
}
//On effectue la calibration
if(digitalRead(PUSH_BUTTON) == 0)
{
delay(500);
measureUnit.startOffsetComputing();
}
#ifdef RADIO_ENABLED
radio.run();
#endif
measureUnit.run();
}