projet3_temperature/lib/MeasureUnit/MeasureUnit.cpp
2020-01-15 22:22:50 +01:00

285 lines
7.6 KiB
C++

#include "MeasureUnit.h"
//#define DEBUG
MeasureUnit::MeasureUnit(uint8_t *analogInput,
uint16_t thermistorCount,
uint64_t precResistor,
ThermistorSetting thermistorSetting,
Adc &adc) : _analogInput(analogInput),
_thermistorCount(thermistorCount),
_precResistor(precResistor),
_thermistorSetting(thermistorSetting),
_adc(adc),
_globalOffset(0),
_error(OK),
_state(IDLING),
_channel(0),
_courant(0.0),
_tension(0.0),
_triggerLevelOff(false)
{
//Allocation dynamique des différent tableaux
_temperatures = (double*) calloc(_thermistorCount, sizeof(double));
_rOffsetMap = (double*) calloc(_thermistorCount, sizeof(double));
_resistanceMap = (double*) malloc(_thermistorCount * sizeof(double));
if(_temperatures == NULL || _rOffsetMap == NULL || _resistanceMap == NULL)
{
_error = MALLOC_ERR;
_temperatures != NULL ? free(_temperatures):(void)_temperatures;
_rOffsetMap != NULL ? free(_rOffsetMap):(void)_rOffsetMap;
_resistanceMap != NULL ? free(_resistanceMap):(void)_resistanceMap;
_temperatures = NULL;
_rOffsetMap = NULL;
_resistanceMap = NULL;
}
_adc.begin();
}
MeasureUnit::~MeasureUnit()
{
if(_error != MALLOC_ERR)
{
free(_temperatures);
free(_rOffsetMap);
free(_resistanceMap);
}
}
/**
* Methode permettant d'effectuer les mesures de température et de les récupérer
*/
double *MeasureUnit::getTemperatures()
{
double courant(0), rPrecTension(0);
//1) Nous calculons le courant présent dans la branche grace à la résistance de précision
#ifdef DEBUG
Serial.println("-------------");
#endif
rPrecTension = _adc.sampleVoltage(0);
#ifdef DEBUG
Serial.println("-------------");
Serial.print("R prec voltage mV : ");Serial.println(rPrecTension,6);
#endif
courant = rPrecTension / (double) _precResistor;
#ifdef DEBUG
Serial.print("R prec current mA : ");Serial.println(courant,6);
#endif
//2) Nous calculons le delta de tensions pour chaque thermistances
for(int i(1); i < _thermistorCount; i++)
{
_resistanceMap[i-1] = _adc.sampleVoltage(_analogInput[i]);
#ifdef DEBUG
Serial.print("Voltage steps ");Serial.print(i-1);Serial.print(" : ");Serial.println(_resistanceMap[i-1]);
#endif
}
_resistanceMap[7] = _adc.getAdcSetting().getVref();
#ifdef DEBUG
Serial.print("Voltage steps 7 : ");Serial.println(_resistanceMap[7]);
#endif
for(int i(_thermistorCount-1); i > 0; i--)
{
//Calcule de delta :
_resistanceMap[i] -= _resistanceMap[i-1];
#ifdef DEBUG
Serial.print("Debug voltage delta : ");Serial.println(_resistanceMap[i]);
#endif
}
//Ne pas oublier de déduire la chute de tension de la resistance de precision pour la première thermistance
_resistanceMap[0] -= rPrecTension;
Serial.printf("Debug voltage delta : 0 -> ");Serial.println(_resistanceMap[0]);
for(int i(0); i < _thermistorCount; i++)
{
//3) Nous en déduisons la résistance
//Serial.print("Resistance ");Serial.print(i);Serial.print(" ");Serial.println(_resistanceMap[i]);
_resistanceMap[i] /= courant;
//4) Nous en déduisons la temperature
_temperatures[i] = computeTemperature(_thermistorSetting.getBeta(), _resistanceMap[i], _thermistorSetting.getRat25());
_temperatures[i] += _rOffsetMap[i] + _globalOffset;
#ifdef DEBUG_TEMP
Serial.print("Temperature ");Serial.print(i);Serial.print(" : ");Serial.println(_temperatures[i]);
#endif
}
return _temperatures;
}
double MeasureUnit::computeTemperature(double beta, double resistance, double rAt25)
{
return (((25.0+273.15) * beta) / (beta + (25.0+273.15)*log(resistance / rAt25))) - 273.15;
}
void MeasureUnit::setGlobalTempOffset(double offset)
{
_globalOffset = offset;
}
double MeasureUnit::getGlobalTempOffset()
{
return _globalOffset;
}
/**
* Cette méthode permet de calibrer toutes les temperatures en faisans la moyenne et appliquant un offset individuel
*/
void MeasureUnit::levelTemperaturesOff()
{
double averageTemp(0);
//We reset the offset
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetMap[i] = 0;
}
getTemperatures();
for(int i(0); i < _thermistorCount; i++)
{
averageTemp += _temperatures[i];
}
averageTemp /= _thermistorCount;
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetMap[i] = averageTemp - _temperatures[i];
}
}
double *MeasureUnit::getROffsetMap()
{
return _rOffsetMap;
}
void MeasureUnit::startTemperatureMeasurement()
{
switch(_state)
{
case IDLING:
_state = MEASURING;
_channel = 0;
break;
case MEASURING:
_adc.startSample(_channel);
if(_channel == 0) //Calcule du courant
{
if(_adc.isSampleReady())
{
_tension = _adc.getSampleVoltage();
_courant = _tension / (double) _precResistor;
#ifdef DEBUG
Serial.print("Tension prec : ");Serial.println(_tension);
#endif
_channel++;
}
}
else //Calcule des niveaux de tensions
{
if(_adc.isSampleReady())
{
_resistanceMap[_channel-1] = _adc.getSampleVoltage();
#ifdef DEBUG
Serial.print("Tension thermistances : ");Serial.println(_resistanceMap[_channel-1]);
#endif
_channel++;
}
}
//Fin de la partie d'acquisition
if(_channel == _thermistorCount)
{
_state = COMPUTING;
_resistanceMap[_channel-1] = _adc.getAdcSetting().getVref();
}
break;
case COMPUTING :
//Ici nous calculons les temperatures
for(int i(_thermistorCount-1); i > 0; i--)
{
//Calcule de delta :
_resistanceMap[i] -= _resistanceMap[i-1];
#ifdef DEBUG
Serial.printf("Debug voltage delta : %u -> ",i);Serial.println(_resistanceMap[i]);
#endif
}
//Ne pas oublier de déduire la chute de tension de la resistance de precision pour la première thermistance
_resistanceMap[0] -= _tension;
#ifdef DEBUG
Serial.printf("Debug voltage delta : 0 -> ");Serial.println(_resistanceMap[0]);
#endif
for(int i(0); i < _thermistorCount; i++)
{
//3) Nous en déduisons la résistance
//Serial.print("Resistance ");Serial.print(i);Serial.print(" ");Serial.println(_resistanceMap[i]);
_resistanceMap[i] /= _courant;
//4) Nous en déduisons la temperature
_temperatures[i] = computeTemperature(_thermistorSetting.getBeta(), _resistanceMap[i], _thermistorSetting.getRat25());
//On effectue un étalonnage
if(_triggerLevelOff)
{
double averageTemp(0);
//We reset the offset
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetMap[i] = 0;
}
for(int i(0); i < _thermistorCount; i++)
{
averageTemp += _temperatures[i];
}
averageTemp /= (double)_thermistorCount;
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetMap[i] = averageTemp - _temperatures[i];
}
_triggerLevelOff = false;
}
_temperatures[i] += _rOffsetMap[i] + _globalOffset;
#ifdef DEBUG_TEMP
Serial.print("Temperature ");Serial.print(i);Serial.print(" : ");Serial.println(_temperatures[i]);
#endif
}
_state = MEASUREMENT_READY;
break;
}
}
void MeasureUnit::levelAsyncTemperaturesOff()
{
_triggerLevelOff = true;
}
boolean MeasureUnit::isMeasurementReady()
{
return _state == MEASUREMENT_READY;
}
double *MeasureUnit::getAsyncTemperatures()
{
double *p(NULL);
if(_state == MEASUREMENT_READY)
{
p = _temperatures;
_state = IDLING;
}
return p;
}