projet3_temperature/lib/MeasureUnit/MeasureUnit.cpp

148 lines
4.0 KiB
C++

#include "MeasureUnit.h"
//#define DEBUG
MeasureUnit::MeasureUnit(uint8_t *analogInput,
uint16_t thermistorCount,
uint64_t precResistor,
ThermistorSetting thermistorSetting,
Adc &adc) : _analogInput(analogInput), _thermistorCount(thermistorCount), _precResistor(precResistor), _thermistorSetting(thermistorSetting), _adc(adc), _globalOffset(0), _error(OK)
{
//Allocation dynamique des différent tableaux
_temperatures = (double*) calloc(_thermistorCount, sizeof(double));
_rOffsetMap = (double*) calloc(_thermistorCount, sizeof(double));
_resistanceMap = (double*) malloc(_thermistorCount * sizeof(double));
if(_temperatures == NULL || _rOffsetMap == NULL || _resistanceMap == NULL)
{
_error = MALLOC_ERR;
_temperatures != NULL ? free(_temperatures):(void)_temperatures;
_rOffsetMap != NULL ? free(_rOffsetMap):(void)_rOffsetMap;
_resistanceMap != NULL ? free(_resistanceMap):(void)_resistanceMap;
_temperatures = NULL;
_rOffsetMap = NULL;
_resistanceMap = NULL;
}
//We start the comm with the adcs
_adc.begin();
}
MeasureUnit::~MeasureUnit()
{
if(_error != MALLOC_ERR)
{
free(_temperatures);
free(_rOffsetMap);
free(_resistanceMap);
}
}
/**
* Methode permettant d'effectuer les mesures de température et de les récupérer
*/
double *MeasureUnit::getTemperatures()
{
double courant(0), rPrecTension(0);
//1) Nous calculons le courant présent dans la branche grace à la résistance de précision
#ifdef DEBUG
Serial.println("-------------");
#endif
rPrecTension = _adc.sampleVoltage(0);
#ifdef DEBUG
Serial.println("-------------");
Serial.print("R prec voltage mV : ");Serial.println(rPrecTension,6);
#endif
courant = rPrecTension / (double) _precResistor;
#ifdef DEBUG
Serial.print("R prec current mA : ");Serial.println(courant,6);
#endif
//2) Nous calculons le delta de tensions pour chaque thermistances
for(int i(1); i < _thermistorCount; i++)
{
_resistanceMap[i-1] = _adc.sampleVoltage(_analogInput[i]);
#ifdef DEBUG
Serial.print("Voltage steps ");Serial.print(i-1);Serial.print(" : ");Serial.println(_resistanceMap[i-1]);
#endif
}
_resistanceMap[7] = _adc.getAdcSetting().getVref();
#ifdef DEBUG
Serial.print("Voltage steps 7 : ");Serial.println(_resistanceMap[7]);
#endif
for(int i(_thermistorCount-1); i > 0; i--)
{
//Calcule de delta :
_resistanceMap[i] -= _resistanceMap[i-1];
#ifdef DEBUG
Serial.print("Debug voltage delta : ");Serial.println(_resistanceMap[i]);
#endif
}
for(int i(0); i < _thermistorCount; i++)
{
//3) Nous en déduisons la résistance
//Serial.print("Resistance ");Serial.print(i);Serial.print(" ");Serial.println(_resistanceMap[i]);
_resistanceMap[i] /= courant;
//4) Nous en déduisons la temperature
_temperatures[i] = computeTemperature(_thermistorSetting.getBeta(), _resistanceMap[i], _thermistorSetting.getRat25());
_temperatures[i] += _rOffsetMap[i] + _globalOffset;
#ifdef DEBUG_TEMP
Serial.print("Temperature ");Serial.print(i);Serial.print(" : ");Serial.println(_temperatures[i]);
#endif
}
return _temperatures;
}
double MeasureUnit::computeTemperature(double beta, double resistance, double rAt25)
{
return (((25.0+273.15) * beta) / (beta + (25.0+273.15)*log(resistance / rAt25))) - 273.15;
}
void MeasureUnit::setGlobalTempOffset(double offset)
{
_globalOffset = offset;
}
double MeasureUnit::getGlobalTempOffset()
{
return _globalOffset;
}
/**
* Cette méthode permet de calibrer toutes les temperatures en faisans la moyenne et appliquant un offset individuel
*/
void MeasureUnit::levelTemperaturesOff()
{
double averageTemp(0);
//We reset the offset
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetMap[i] = 0;
}
getTemperatures();
for(int i(0); i < _thermistorCount; i++)
{
averageTemp += _temperatures[i];
}
averageTemp /= _thermistorCount;
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetMap[i] = averageTemp - _temperatures[i];
}
}
double *MeasureUnit::getROffsetMap()
{
return _rOffsetMap;
}