Compare commits

...

4 Commits

Author SHA1 Message Date
anschrammh
5a9b496503 Mise à jour du diagramme de classes (classe LoRaRadio) 2020-01-29 20:05:11 +01:00
anschrammh
af0a92f4b6 Mise à jour de la bibliothèque MeasureUnit 2020-01-29 20:04:30 +01:00
anschrammh
31005dad7f Ajout de la coloration syntaxique 2020-01-29 20:03:45 +01:00
anschrammh
ae8dee45bd Ajout de la coloration syntaxique et du système de handler 2020-01-29 20:03:18 +01:00
9 changed files with 649 additions and 400 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,7 @@
#include "LoRaRadio.h"
lmic_pinmap lmic_pins = {0};
void (*LoRaRadio::downlinkHandler)(u1_t, u1_t, u1_t*) = NULL;
LoRaRadio::LoRaRadio(PinMap pinMap, dr_t dataRate, s1_t txPower) :_pinMap(pinMap), _dataRate(dataRate), _txPower(txPower)
{
@ -62,3 +63,31 @@ void LoRaRadio::run()
{
os_runloop_once();
}
void LoRaRadio::setDownlinkHandler(void (*funcP)(u1_t, u1_t, u1_t*))
{
downlinkHandler = funcP;
}
/*
* Here, we declare the onEvent function required by the LMIC
*/
void onEvent(ev_t ev)
{
switch(ev)
{
case EV_TXCOMPLETE:
//Event telling us that the data was transmitted
//It is also here that we check for downlinks
if(LMIC.dataLen)
{
//Data is available
if(LoRaRadio::downlinkHandler != NULL)
(*LoRaRadio::downlinkHandler)(LMIC.dataLen, LMIC.dataBeg, LMIC.frame);
}
break;
case EV_RXCOMPLETE:
// data received in ping slot
break;
}
}

View File

@ -5,6 +5,10 @@
#include <hal/hal.h>
#include <SPI.h>
#include <Arduino.h>
/*
* Here, we define the onEvent function required by the LMIC
*/
void onEvent(ev_t ev);
class PinMap
{
@ -32,6 +36,11 @@ class LoRaRadio
void setMCUClockError(u2_t percent = 30);
void send(u1_t port, uint8_t *data, uint8_t length, u1_t confirmed = false);
void run();
void setDownlinkHandler(void (*funcP)(u1_t, u1_t, u1_t*));
//Function pointers used to interact with events
//Parameters : dataLen, dataBeg, dataBuffer
static void (*downlinkHandler)(u1_t, u1_t, u1_t*);
protected:
private:
dr_t _dataRate;

View File

@ -7,10 +7,6 @@ u1_t dio[3] = {26,33,32};
void os_getArtEui (u1_t* buf) { }
void os_getDevEui (u1_t* buf) { }
void os_getDevKey (u1_t* buf) { }
void onEvent(ev_t ev)
{
}
static u1_t NWKSKEY[16] = { 0x1F, 0x9E, 0xE2, 0x7A, 0xC8, 0xBA, 0xE8, 0xEA, 0xF5, 0xC2, 0x5E, 0x47, 0x5D, 0xE0, 0x77, 0x55 };
static u1_t APPSKEY[16] = { 0x3B, 0x89, 0x86, 0x96, 0xBB, 0xAA, 0x38, 0x1E, 0x1F, 0xC4, 0xAD, 0x03, 0xEF, 0x3F, 0x56, 0x12 };

View File

@ -0,0 +1,35 @@
#######################################
# Syntax Coloring Map LoRaRadio
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
LoRaRadio KEYWORD1
PinMap KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
init KEYWORD2
setTTNSession KEYWORD2
setRadioEUChannels KEYWORD2
setMCUClockError KEYWORD2
send KEYWORD2
run KEYWORD2
setDownlinkHandler KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################
bit_t LITERAL1
u1_t LITERAL1
u2_t LITERAL1
u4_t LITERAL1
s1_t LITERAL1
dr_t LITERAL1
devaddr_t LITERAL1
xref2u1_t LITERAL1
DR_SF7 LITERAL1
ev_t LITERAL1

View File

@ -56,6 +56,100 @@ MeasureUnit::~MeasureUnit()
void MeasureUnit::run()
{
switch(_state)
{
case MEASURING:
_adc.startSample(_channel);
if(_channel == 0) //Calcule du courant
{
if(_adc.isSampleReady())
{
_tension = _adc.getSampleVoltage();
_courant = _tension / (double) _precResistor;
#ifdef DEBUG
Serial.print("Tension prec : ");Serial.println(_tension);
#endif
_channel++;
}
}
else //Calcule des niveaux de tensions
{
if(_adc.isSampleReady())
{
_resistanceMap[_channel-1] = _adc.getSampleVoltage();
#ifdef DEBUG
Serial.print("Tension thermistances : ");Serial.println(_resistanceMap[_channel-1]);
#endif
_channel++;
}
}
//Fin de la partie d'acquisition
if(_channel == _thermistorCount)
{
_state = COMPUTING;
_resistanceMap[_channel-1] = _adc.getAdcSetting().getVref();
}
break;
case COMPUTING :
//Ici nous calculons les temperatures
for(int i(_thermistorCount-1); i > 0; i--)
{
//Calcule de delta :
_resistanceMap[i] -= _resistanceMap[i-1];
#ifdef DEBUG
Serial.printf("Debug voltage delta : %u -> ",i);Serial.println(_resistanceMap[i]);
#endif
}
//Ne pas oublier de déduire la chute de tension de la resistance de precision pour la première thermistance
_resistanceMap[0] -= _tension;
#ifdef DEBUG
Serial.printf("Debug voltage delta : 0 -> ");Serial.println(_resistanceMap[0]);
#endif
for(int i(0); i < _thermistorCount; i++)
{
//3) Nous en déduisons la résistance
//Serial.print("Resistance ");Serial.print(i);Serial.print(" ");Serial.println(_resistanceMap[i]);
_resistanceMap[i] /= _courant;
//4) Nous en déduisons la temperature
_temperatures[i] = computeTemperature(_thermistorSetting.getBeta(), _resistanceMap[i], _thermistorSetting.getRat25());
//On effectue un étalonnage
if(_triggerLevelOff)
{
double averageTemp(0);
//We reset the offset
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetMap[i] = 0;
}
for(int i(0); i < _thermistorCount; i++)
{
averageTemp += _temperatures[i];
}
averageTemp /= (double)_thermistorCount;
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetMap[i] = averageTemp - _temperatures[i];
}
_triggerLevelOff = false;
}
_temperatures[i] += _rOffsetMap[i] + _globalOffset;
#ifdef DEBUG_TEMP
Serial.print("Temperature ");Serial.print(i);Serial.print(" : ");Serial.println(_temperatures[i]);
#endif
}
_state = MEASUREMENT_READY;
break;
}
if(_offsetCounter < _offsetComputeIte && isMeasurementReady())
{
//We reset the offset array
@ -238,105 +332,17 @@ double *MeasureUnit::getROffsetMap()
return _rOffsetMap;
}
void MeasureUnit::startTemperatureMeasurement()
boolean MeasureUnit::startTemperatureMeasurement()
{
switch(_state)
if(_state == IDLING)
{
case IDLING:
_state = MEASURING;
_channel = 0;
break;
case MEASURING:
_adc.startSample(_channel);
if(_channel == 0) //Calcule du courant
{
if(_adc.isSampleReady())
{
_tension = _adc.getSampleVoltage();
_courant = _tension / (double) _precResistor;
#ifdef DEBUG
Serial.print("Tension prec : ");Serial.println(_tension);
#endif
_channel++;
}
}
else //Calcule des niveaux de tensions
{
if(_adc.isSampleReady())
{
_resistanceMap[_channel-1] = _adc.getSampleVoltage();
#ifdef DEBUG
Serial.print("Tension thermistances : ");Serial.println(_resistanceMap[_channel-1]);
#endif
_channel++;
}
}
//Fin de la partie d'acquisition
if(_channel == _thermistorCount)
{
_state = COMPUTING;
_resistanceMap[_channel-1] = _adc.getAdcSetting().getVref();
}
break;
case COMPUTING :
//Ici nous calculons les temperatures
for(int i(_thermistorCount-1); i > 0; i--)
{
//Calcule de delta :
_resistanceMap[i] -= _resistanceMap[i-1];
#ifdef DEBUG
Serial.printf("Debug voltage delta : %u -> ",i);Serial.println(_resistanceMap[i]);
#endif
}
//Ne pas oublier de déduire la chute de tension de la resistance de precision pour la première thermistance
_resistanceMap[0] -= _tension;
#ifdef DEBUG
Serial.printf("Debug voltage delta : 0 -> ");Serial.println(_resistanceMap[0]);
#endif
for(int i(0); i < _thermistorCount; i++)
{
//3) Nous en déduisons la résistance
//Serial.print("Resistance ");Serial.print(i);Serial.print(" ");Serial.println(_resistanceMap[i]);
_resistanceMap[i] /= _courant;
//4) Nous en déduisons la temperature
_temperatures[i] = computeTemperature(_thermistorSetting.getBeta(), _resistanceMap[i], _thermistorSetting.getRat25());
//On effectue un étalonnage
if(_triggerLevelOff)
{
double averageTemp(0);
//We reset the offset
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetMap[i] = 0;
}
for(int i(0); i < _thermistorCount; i++)
{
averageTemp += _temperatures[i];
}
averageTemp /= (double)_thermistorCount;
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetMap[i] = averageTemp - _temperatures[i];
}
_triggerLevelOff = false;
}
_temperatures[i] += _rOffsetMap[i] + _globalOffset;
#ifdef DEBUG_TEMP
Serial.print("Temperature ");Serial.print(i);Serial.print(" : ");Serial.println(_temperatures[i]);
#endif
}
_state = MEASUREMENT_READY;
break;
_state = MEASURING;
_channel = 0;
return true;
}
return false;
}
void MeasureUnit::levelAsyncTemperaturesOff()

View File

@ -23,7 +23,7 @@ class MeasureUnit
//Async methods
enum STATE {IDLING, MEASURING, COMPUTING, MEASUREMENT_READY};
void startTemperatureMeasurement();
boolean startTemperatureMeasurement();
boolean isMeasurementReady();
double *getAsyncTemperatures();
void levelAsyncTemperaturesOff();

View File

@ -6,6 +6,7 @@
* 17/12/2019
*/
#include <Wire.h>
#include <WiFi.h>
#include <RTClib.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
@ -20,11 +21,46 @@
uint8_t analogInput[] = {0,1,2,3,4,5,6,7};
double *tempArray = NULL;
/*
* Liste des offsets trouvés
* | -0.49 | 0.36 | -0.29 | 0.38 | 0.44 | -0.35 | -0.21 | 0.14 |
* | -0.72 | 0.07 | -0.52 | -0.01 | 2.38 | -0.65 | -0.44 | -0.11 |
* | -0.99 | -0.06 | -0.74 | 2.24 | 0.73 | -0.86 | -0.68 | 0.35 |
*/
void downlinkHandler(u1_t length, u1_t dataBeg, u1_t *data)
{
Serial.println("Downlink received : ");
for(uint8_t i(0); i < length; i++)
{
Serial.print(data[dataBeg + i],HEX);
}
Serial.println();
//Action en fonction de l'octet de commande
switch(data[0])
{
case 0x01://Mise à jour de l'heure
//Octets suivants:
//2 jour 3 mois 4 année 5 heures 6 minutes
if(length == 6)
{
Serial.printf("dd: %u, m: %u, yyyy: %d, hh: %u, mm: %u\n", data[2], data[3], data[4]+2000, data[5], data[6]);
}
else
Serial.println("Action réglage RTC : paramètres insuffisants");
break;
default:
Serial.println("Action inconnnue");
}
}
//Objet de calcule de la temperature
//ThermistorSetting thermistorSetting(3380, 10000);
ThermistorSetting thermistorSetting(3650, 470);
//AdcSetting adcSetting(3300.0, 12, 310, 3);
AdcSetting adcSetting(3285, 15, 6, 10);
AdcSetting adcSetting(3320, 15, 6, 10);
Ads1115 adc;
MeasureUnit measureUnit(analogInput, 8, 990, thermistorSetting, adc);
//MeasureUnit measureUnit(analogInput, 8, 99, thermistorSetting, adc);
@ -46,10 +82,6 @@ unsigned long _time(0);
void os_getArtEui (u1_t* buf) { }
void os_getDevEui (u1_t* buf) { }
void os_getDevKey (u1_t* buf) { }
void onEvent(ev_t ev)
{
}
static u1_t NWKSKEY[16] = { 0x1F, 0x9E, 0xE2, 0x7A, 0xC8, 0xBA, 0xE8, 0xEA, 0xF5, 0xC2, 0x5E, 0x47, 0x5D, 0xE0, 0x77, 0x55 };
static u1_t APPSKEY[16] = { 0x3B, 0x89, 0x86, 0x96, 0xBB, 0xAA, 0x38, 0x1E, 0x1F, 0xC4, 0xAD, 0x03, 0xEF, 0x3F, 0x56, 0x12 };
@ -63,12 +95,20 @@ void setup() {
Serial.begin(115200);
delay(1000);
Serial.println("Start setup");
WiFi.mode(WIFI_OFF);
pinMode(PUSH_BUTTON, INPUT);
//Radio init
//Partie concernant l'initialisation de la radio
#ifdef RADIO_ENABLED
radio.init();
radio.setTTNSession(0x1, DEVADDR, NWKSKEY, APPSKEY);
radio.setRadioEUChannels();
/*
* La directive setMCUClockError() permet de laisser une fenêtre plus grande pour le slot de
* réception (Downlink). En effet ce slot doit durer 2 secondes et il peut durer moins en raison
* d'imprécisions d'horloge.
*/
radio.setMCUClockError();
radio.setDownlinkHandler(&(downlinkHandler));
#endif
//Adc init
adc.setAdcSetting(adcSetting);
@ -103,8 +143,7 @@ void loop() {
//On peut tester si la conversion est terminée avec :
//if(measureUnit.isMeasurementReady())
measureUnit.run();
//measureUnit.getAsyncTemperatures() renvoie NULL si la recupération de la température n'est pas terminée
tempArray = measureUnit.getAsyncTemperatures();
@ -162,4 +201,5 @@ void loop() {
#ifdef RADIO_ENABLED
radio.run();
#endif
measureUnit.run();
}

View File

@ -0,0 +1,20 @@
#######################################
# Syntax Coloring Map PayloadFormatter
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
PayloadFormatter KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
buildPayload KEYWORD2
startSession KEYWORD2
endSession KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################