Ajout d'inclusion conditionnelle de l'object LoRaRadio

This commit is contained in:
anschrammh 2020-01-17 12:40:44 +01:00
parent f33ed415a8
commit e7919dfee5

View File

@ -1,6 +1,6 @@
/** /**
* Cet exemple correspond à l'application de test de la bibliothèque MeasureUnit qui * Cet exemple correspond à l'application de test de la bibliothèque MeasureUnit qui
* permet de calculer la température mesurée par une matrice de thermistance * permet de calculer la température qui est fonction de la résistance d'une matrice de thermistance
* *
* Anatole SCHRAMM-HENRY * Anatole SCHRAMM-HENRY
* 17/12/2019 * 17/12/2019
@ -9,31 +9,62 @@
#include "MeasureUnit.h" #include "MeasureUnit.h"
#include "PayloadFormatter.h" #include "PayloadFormatter.h"
#include "Ads1115.h" #include "Ads1115.h"
#include "LoRaRadio.h"
//#define RADIO_ENABLED
uint8_t analogInput[] = {0,1,2,3,4,5,6,7}; uint8_t analogInput[] = {0,1,2,3,4,5,6,7};
double *tempArray = NULL; double *tempArray = NULL;
//Objet de calcule de la temperature //Objet de calcule de la temperature
ThermistorSetting thermistorSetting(3380, 10000); //ThermistorSetting thermistorSetting(3380, 10000);
ThermistorSetting thermistorSetting(3650, 470);
//AdcSetting adcSetting(3300.0, 12, 310, 3); //AdcSetting adcSetting(3300.0, 12, 310, 3);
AdcSetting adcSetting(3410.0, 15, 6, 10);//6, 10); AdcSetting adcSetting(3298.13, 15, 6, 10);//6, 10);
Ads1115 adc; Ads1115 adc;
MeasureUnit measureUnit(analogInput, 8, 990, thermistorSetting, adc); //MeasureUnit measureUnit(analogInput, 8, 990, thermistorSetting, adc);
MeasureUnit measureUnit(analogInput, 8, 99, thermistorSetting, adc);
//Objet de création des trames LoRa //Objet de création des trames LoRa
PayloadFormatter payloadFormatter(2,4); PayloadFormatter payloadFormatter(2,4);
DateTime payloadDate(2020,12,26,8,42); DateTime payloadDate(2020,12,26,8,42);
boolean data(false); boolean data(false);
uint8_t *payload(NULL); uint8_t *payload(NULL), _timeCounter(0), size(0), _channel(0);
boolean calibrer(false); boolean calibrer(false);
unsigned long _time(millis()); unsigned long _time(0);
/*
* Radio Part
*/
void os_getArtEui (u1_t* buf) { }
void os_getDevEui (u1_t* buf) { }
void os_getDevKey (u1_t* buf) { }
void onEvent(ev_t ev)
{
}
static u1_t NWKSKEY[16] = { 0x1F, 0x9E, 0xE2, 0x7A, 0xC8, 0xBA, 0xE8, 0xEA, 0xF5, 0xC2, 0x5E, 0x47, 0x5D, 0xE0, 0x77, 0x55 };
static u1_t APPSKEY[16] = { 0x3B, 0x89, 0x86, 0x96, 0xBB, 0xAA, 0x38, 0x1E, 0x1F, 0xC4, 0xAD, 0x03, 0xEF, 0x3F, 0x56, 0x12 };
static u4_t DEVADDR = 0x260113D3;//0x03FF0001 ; // <-- Change this address for every node!
u1_t dio[3] = {26,33,32};
PinMap pinMap(18, LMIC_UNUSED_PIN, 14, dio);
LoRaRadio radio(pinMap);
void setup() { void setup() {
Serial.begin(115200); Serial.begin(115200);
delay(1000); delay(1000);
Serial.println("Start setup"); Serial.println("Start setup");
//Radio init
#ifdef RADIO_ENABLED
radio.init();
radio.setTTNSession(0x1, DEVADDR, NWKSKEY, APPSKEY);
radio.setRadioEUChannels();
#endif
//Adc init
adc.setAdcSetting(adcSetting); adc.setAdcSetting(adcSetting);
//measureUnit.setGlobalTempOffset(-17); //measureUnit.setGlobalTempOffset(-17);
_time = millis();
Serial.println("End setup"); Serial.println("End setup");
Serial.println("| T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 |"); Serial.println("| T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 |");
@ -41,14 +72,16 @@ void setup() {
} }
void loop() { void loop() {
//Version synchrone //Version synchrone (bloquante)
//tempArray = measureUnit.getTemperatures(); //tempArray = measureUnit.getTemperatures();
//Version asynchrone : //Version asynchrone :
measureUnit.startTemperatureMeasurement(); measureUnit.startTemperatureMeasurement();
//On peut tester si la conversion est terminée avec : //On peut tester si la conversion est terminée avec :
//if(measureUnit.isMeasurementReady()) //if(measureUnit.isMeasurementReady())
//measureUnit.getAsyncTemperatures() renvoie NULL si la recupération de la température n'est pas terminée
tempArray = measureUnit.getAsyncTemperatures(); tempArray = measureUnit.getAsyncTemperatures();
if(tempArray != NULL) if(tempArray != NULL)
@ -68,7 +101,7 @@ void loop() {
//On affiche la trame associée: //On affiche la trame associée:
payloadFormatter.startSession(1); payloadFormatter.startSession(1);
uint8_t size = payloadFormatter.buildPayload(&payload, &payloadDate,tempArray); size = payloadFormatter.buildPayload(&payload, &payloadDate,tempArray);
if(size != 0) if(size != 0)
{ {
//Serial.print("LoRa packet --> ");Serial.print("size : ");Serial.print(size);Serial.println(" bytes"); //Serial.print("LoRa packet --> ");Serial.print("size : ");Serial.print(size);Serial.println(" bytes");
@ -80,26 +113,30 @@ void loop() {
} }
else else
Serial.print("Failed to build LoRa packet"); Serial.print("Failed to build LoRa packet");
/*if(payloadFormatter.endSession()) //if(payloadFormatter.endSession())
Serial.println("Session ended successfully");*/ //Serial.println("Session ended successfully");
#ifdef RADIO_ENABLED
if(_timeCounter == 30 && size != 0)
{
_timeCounter = 0;
Serial.printf("Sending data\n");
radio.send(1, payload, size);
}
_timeCounter++;
#endif
} }
//On effectue la calibration //On effectue la calibration
if(millis() - _time > 5000 && !calibrer) /*if(millis() - _time > 5000 && !calibrer)
{ {
Serial.println("********************Starting calibration********************"); Serial.println("********************Starting calibration********************");
measureUnit.levelAsyncTemperaturesOff(); measureUnit.levelAsyncTemperaturesOff();
Serial.println("********************Ending calibration********************"); Serial.println("********************Ending calibration********************");
calibrer = true; calibrer = true;
} }*/
#ifdef RADIO_ENABLED
if(Serial.available()) radio.run();
{ #endif
if(Serial.read() == 'c')
{
//Serial.println("********************Starting calibration********************");
measureUnit.levelAsyncTemperaturesOff();
//Serial.println("********************Ending calibration********************");
}
}
} }