Changement apportés à l'objet measure unit

This commit is contained in:
anschrammh 2020-01-23 13:21:56 +01:00
parent 6f1e8734c4
commit 62019634c6
3 changed files with 135 additions and 24 deletions

View File

@ -14,6 +14,8 @@ _globalOffset(0),
_error(OK), _error(OK),
_state(IDLING), _state(IDLING),
_channel(0), _channel(0),
_offsetComputeIte(7),
_offsetCounter(7),
_courant(0.0), _courant(0.0),
_tension(0.0), _tension(0.0),
_triggerLevelOff(false) _triggerLevelOff(false)
@ -22,17 +24,20 @@ _triggerLevelOff(false)
_temperatures = (double*) calloc(_thermistorCount, sizeof(double)); _temperatures = (double*) calloc(_thermistorCount, sizeof(double));
_rOffsetMap = (double*) calloc(_thermistorCount, sizeof(double)); _rOffsetMap = (double*) calloc(_thermistorCount, sizeof(double));
_resistanceMap = (double*) malloc(_thermistorCount * sizeof(double)); _resistanceMap = (double*) malloc(_thermistorCount * sizeof(double));
_rOffsetBuffer = (double*) malloc(_thermistorCount * sizeof(double));
if(_temperatures == NULL || _rOffsetMap == NULL || _resistanceMap == NULL) if(_temperatures == NULL || _rOffsetMap == NULL || _resistanceMap == NULL || _rOffsetBuffer == NULL)
{ {
_error = MALLOC_ERR; _error = MALLOC_ERR;
_temperatures != NULL ? free(_temperatures):(void)_temperatures; _temperatures != NULL ? free(_temperatures):(void)_temperatures;
_rOffsetMap != NULL ? free(_rOffsetMap):(void)_rOffsetMap; _rOffsetMap != NULL ? free(_rOffsetMap):(void)_rOffsetMap;
_resistanceMap != NULL ? free(_resistanceMap):(void)_resistanceMap; _resistanceMap != NULL ? free(_resistanceMap):(void)_resistanceMap;
_rOffsetBuffer != NULL ? free(_rOffsetBuffer):(void)_rOffsetBuffer;
_temperatures = NULL; _temperatures = NULL;
_rOffsetMap = NULL; _rOffsetMap = NULL;
_resistanceMap = NULL; _resistanceMap = NULL;
_rOffsetBuffer = NULL;
} }
_adc.begin(); _adc.begin();
@ -45,9 +50,83 @@ MeasureUnit::~MeasureUnit()
free(_temperatures); free(_temperatures);
free(_rOffsetMap); free(_rOffsetMap);
free(_resistanceMap); free(_resistanceMap);
free(_rOffsetBuffer);
} }
} }
void MeasureUnit::run()
{
if(_offsetCounter < _offsetComputeIte && isMeasurementReady())
{
//We reset the offset array
if(_offsetCounter == 0)
{
Serial.printf("Initiating average \n");
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetBuffer[i] = 0;
_rOffsetMap[i] = 0;
}
}
else if(_offsetCounter == _offsetComputeIte-1)
{
double averageTemp(0);
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetBuffer[i] += _temperatures[i];
}
//We compute the average for each thermistor:
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetBuffer[i] /= _offsetCounter;
averageTemp += _rOffsetBuffer[i];
}
averageTemp /= _thermistorCount;
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetMap[i] = averageTemp - _rOffsetBuffer[i];
}
Serial.println("Offset done");
Serial.print("|");
for(int i(0); i < _thermistorCount; i++)
{
if(i != 7)
{
Serial.print(" ");Serial.print(_rOffsetMap[i],2);Serial.print(" |");
}
else
{
Serial.print(" ");Serial.print(_rOffsetMap[i],2);Serial.print(" |");
}
}
Serial.println("");
}
else
{
for(int i(0); i < _thermistorCount; i++)
{
_rOffsetBuffer[i] += _temperatures[i];
}
}
_offsetCounter++;
}
}
void MeasureUnit::setOffsetIteration(uint8_t iteration)
{
_offsetComputeIte = iteration;
_offsetCounter = iteration;
}
void MeasureUnit::startOffsetComputing()
{
_offsetCounter = 0;
}
/** /**
* Methode permettant d'effectuer les mesures de température et de les récupérer * Methode permettant d'effectuer les mesures de température et de les récupérer
*/ */
@ -282,3 +361,9 @@ double *MeasureUnit::getAsyncTemperatures()
return p; return p;
} }
void MeasureUnit::init()
{
Serial.println(computeTemperature(3380, 18000, 10000));
Serial.println(computeTemperature(3380, 11700, 10000));
}

View File

@ -12,6 +12,9 @@ class MeasureUnit
MeasureUnit(uint8_t *analogInput, uint16_t thermistorCount, uint64_t precResistor, ThermistorSetting thermistorSetting, Adc &adc); MeasureUnit(uint8_t *analogInput, uint16_t thermistorCount, uint64_t precResistor, ThermistorSetting thermistorSetting, Adc &adc);
~MeasureUnit(); ~MeasureUnit();
void init(); void init();
void run();
void startOffsetComputing();
void setOffsetIteration(uint8_t iteration);
void setGlobalTempOffset(double offset); void setGlobalTempOffset(double offset);
void levelTemperaturesOff(); void levelTemperaturesOff();
double getGlobalTempOffset(); double getGlobalTempOffset();
@ -34,7 +37,7 @@ class MeasureUnit
double _globalOffset; //Correspond à l'offset global nécessaire afin d'avoir une température qui corresponde à la réalité double _globalOffset; //Correspond à l'offset global nécessaire afin d'avoir une température qui corresponde à la réalité
double *_temperatures; //Tableau contenant toutes les températures double *_temperatures; //Tableau contenant toutes les températures
double *_rOffsetMap; //Tableau qui contient les offsets individuels pour chaque thermistance double *_rOffsetMap,*_rOffsetBuffer; //Tableau qui contient les offsets individuels pour chaque thermistance
double *_resistanceMap; //Tableau qui contient les resistances associées aux thermistances (pour debug seulement) double *_resistanceMap; //Tableau qui contient les resistances associées aux thermistances (pour debug seulement)
uint8_t *_analogInput; //Pointeur qui garde l'adresse du tableau contenant le nom des entrées analogiques uint8_t *_analogInput; //Pointeur qui garde l'adresse du tableau contenant le nom des entrées analogiques
uint16_t _thermistorCount; uint16_t _thermistorCount;
@ -46,7 +49,7 @@ class MeasureUnit
//Async part //Async part
STATE _state; STATE _state;
uint8_t _channel; uint8_t _channel, _offsetComputeIte,_offsetCounter;
double _courant, _tension; double _courant, _tension;
boolean _triggerLevelOff; //Attribut permettant de savoir si un étalonnage a été demandé boolean _triggerLevelOff; //Attribut permettant de savoir si un étalonnage a été demandé
}; };

View File

@ -5,13 +5,17 @@
* Anatole SCHRAMM-HENRY * Anatole SCHRAMM-HENRY
* 17/12/2019 * 17/12/2019
*/ */
#include <Wire.h>
#include <RTClib.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#include "MeasureUnit.h" #include "MeasureUnit.h"
#include "PayloadFormatter.h" #include "PayloadFormatter.h"
#include "Ads1115.h" #include "Ads1115.h"
#include "LoRaRadio.h" #include "LoRaRadio.h"
//#define RADIO_ENABLED #define RADIO_ENABLED
#define PUSH_BUTTON 0
uint8_t analogInput[] = {0,1,2,3,4,5,6,7}; uint8_t analogInput[] = {0,1,2,3,4,5,6,7};
double *tempArray = NULL; double *tempArray = NULL;
@ -20,13 +24,17 @@ double *tempArray = NULL;
//ThermistorSetting thermistorSetting(3380, 10000); //ThermistorSetting thermistorSetting(3380, 10000);
ThermistorSetting thermistorSetting(3650, 470); ThermistorSetting thermistorSetting(3650, 470);
//AdcSetting adcSetting(3300.0, 12, 310, 3); //AdcSetting adcSetting(3300.0, 12, 310, 3);
AdcSetting adcSetting(3298.13, 15, 6, 10);//6, 10); AdcSetting adcSetting(3285, 15, 6, 10);
Ads1115 adc; Ads1115 adc;
//MeasureUnit measureUnit(analogInput, 8, 990, thermistorSetting, adc); MeasureUnit measureUnit(analogInput, 8, 990, thermistorSetting, adc);
MeasureUnit measureUnit(analogInput, 8, 99, thermistorSetting, adc); //MeasureUnit measureUnit(analogInput, 8, 99, thermistorSetting, adc);
//Objet de création des trames LoRa //Objet de création des trames LoRa
PayloadFormatter payloadFormatter(2,4); PayloadFormatter payloadFormatter(2,4);
DateTime payloadDate(2020,12,26,8,42);
RTC_DS3231 rtc;
DateTime payloadDate;
TwoWire sc(1);
Adafruit_SSD1306 display(128,64,&sc, 16);
boolean data(false); boolean data(false);
uint8_t *payload(NULL), _timeCounter(0), size(0), _channel(0); uint8_t *payload(NULL), _timeCounter(0), size(0), _channel(0);
@ -55,6 +63,7 @@ void setup() {
Serial.begin(115200); Serial.begin(115200);
delay(1000); delay(1000);
Serial.println("Start setup"); Serial.println("Start setup");
pinMode(PUSH_BUTTON, INPUT);
//Radio init //Radio init
#ifdef RADIO_ENABLED #ifdef RADIO_ENABLED
radio.init(); radio.init();
@ -65,22 +74,37 @@ void setup() {
adc.setAdcSetting(adcSetting); adc.setAdcSetting(adcSetting);
//measureUnit.setGlobalTempOffset(-17); //measureUnit.setGlobalTempOffset(-17);
_time = millis(); _time = millis();
Serial.println("End setup");
if(rtc.begin())Serial.println("RTC Ok!");
else Serial.println("RTC Fail!");
sc.begin(4, 15);
if(display.begin(SSD1306_SWITCHCAPVCC,0x3C))
{
Serial.println("SCREEN Ok!");
display.clearDisplay();
display.setTextColor(WHITE);
display.setCursor(0,15);
display.setTextSize(2);
display.print("LES ALEAS DU DIRECT");
display.display();
}
else Serial.println("SCREEN Fail!");
display.startscrollleft(0,16);
Serial.println("End setup");
measureUnit.init();
Serial.println("| T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 |"); Serial.println("| T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 |");
} }
void loop() { void loop() {
//Version synchrone (bloquante)
//tempArray = measureUnit.getTemperatures();
//Version asynchrone : //Version asynchrone :
measureUnit.startTemperatureMeasurement(); measureUnit.startTemperatureMeasurement();
//On peut tester si la conversion est terminée avec : //On peut tester si la conversion est terminée avec :
//if(measureUnit.isMeasurementReady()) //if(measureUnit.isMeasurementReady())
measureUnit.run();
//measureUnit.getAsyncTemperatures() renvoie NULL si la recupération de la température n'est pas terminée //measureUnit.getAsyncTemperatures() renvoie NULL si la recupération de la température n'est pas terminée
tempArray = measureUnit.getAsyncTemperatures(); tempArray = measureUnit.getAsyncTemperatures();
@ -101,6 +125,7 @@ void loop() {
//On affiche la trame associée: //On affiche la trame associée:
payloadFormatter.startSession(1); payloadFormatter.startSession(1);
payloadDate = rtc.now();
size = payloadFormatter.buildPayload(&payload, &payloadDate,tempArray); size = payloadFormatter.buildPayload(&payload, &payloadDate,tempArray);
if(size != 0) if(size != 0)
{ {
@ -109,13 +134,13 @@ void loop() {
{ {
payload[i] <= 0x0F ? Serial.print("0") : Serial.print(""); Serial.print(payload[i], HEX); Serial.print(" "); payload[i] <= 0x0F ? Serial.print("0") : Serial.print(""); Serial.print(payload[i], HEX); Serial.print(" ");
} }
Serial.println(); Serial.printf("|%u-%u-%u %u:%u \n", payloadDate.day(),payloadDate.month(),payloadDate.year(),payloadDate.hour(),payloadDate.minute());
} }
else else
Serial.print("Failed to build LoRa packet"); Serial.print("Failed to build LoRa packet");
//if(payloadFormatter.endSession())
//Serial.println("Session ended successfully"); payloadFormatter.endSession();
#ifdef RADIO_ENABLED #ifdef RADIO_ENABLED
if(_timeCounter == 30 && size != 0) if(_timeCounter == 30 && size != 0)
{ {
@ -129,13 +154,11 @@ void loop() {
} }
//On effectue la calibration //On effectue la calibration
/*if(millis() - _time > 5000 && !calibrer) if(digitalRead(PUSH_BUTTON) == 0)
{ {
Serial.println("********************Starting calibration********************"); delay(500);
measureUnit.levelAsyncTemperaturesOff(); measureUnit.startOffsetComputing();
Serial.println("********************Ending calibration********************"); }
calibrer = true;
}*/
#ifdef RADIO_ENABLED #ifdef RADIO_ENABLED
radio.run(); radio.run();
#endif #endif