

WM_W800_Register Manual

1

V3.0

Beijing Lianshengde Microelectronics Co., Ltd. (winner micro)

Address: Floor 18, Yindu Building, No. 67, Fucheng Road, Haidian District, Beijing

Tel: +86-10-62161900

Company website: www.winnermicro.com

Document modification record

Version revisi	on time	revision history	author	review
V0.1	2019-09-25	create	chengsheng	
V0.2	2020-05-13 Revise the	remaining description errors;	Chengsheng	
V1.0	2020-7-20 Update the	e digital function interface	Ray	
v2.0	2020-8-20 Improve the	high-speed interface function	Ray	\mathbf{O}
v2.1	2020-09-08 Add SD_4	DC module description	chengsheng	×
V3.0	2022-08-20 Update co	mpany information and modify bugs	Ray	

Table of	contents
Documentation Modification History	
Table of contents	
Figure Catalog	twenty four
table of contents	
introduction	
1.1 Purpose of writing	
1.2 References	
2 features	
3 Overview	41
4 chip structure	

4.1 Chip	structure			
4.2 Bus	structure			
4.3 Cloc	k structure			
4.4 Addı	ress space			
	4.4.1	SRAM		
	4.4.2 Flash		5	4
	4.4.3 PSR/	AM	5	5
4.5 Star	t configuration	on		
₅ Clock ar	nd Reset Mo	odule		
5.1 Fund	ction overvie	ew		
5.2 Mair	n features			
5.3 Fund	ction descrip	ption		
	5.3.1	Clock gating	57	
	5.3.2	Clock Adaptive Shutdown		
	5.3.3	Function reset		
	5.3.4	Clock Divide		
	5.3.5	Debug Function Control	60	
5.4 Reg	ister descrip	tion	1	
	5.4.1	Register List	61	
	5.4.2 Softw	are clock gating enable register 61		
	5.4.3	Software Clock Mask Register	65	
	5.4.4 Softw	rare reset control register		

Machine Translated by Google

	5.4.5	Clock Divider Configuration Register	
	5.4.6	Debug Control Register	
	5.4.7 I2S o	clock control register	75
	5.4.8	Reset Status Register	77
6 DMA modul	e		. 78
6.1 Fur	nction overvi	iew	
6.2 Ma	in features		
6.3 Fur	nctional desc	cription	
	6.3.1 DMA	channel	
	6.3.2 DMA	data flow	79
	6.3.3 DMA	NRound Robin Mode	
	6.3.4 DMA	transfer mode	
	6.3.5 DMA	Peripheral Selection	
	6.3.6 DMA	linked list mode	
	6.3.7 DMA	Interrupts	
6.4 Re	gister descri	ption	
	6.4.1	Register List	
	6.4.2	Interrupt Mask Register	83
	6.4.3	Interrupt Status Register	84
	6.4.4 UAR	T select register	
	6.4.5 DMA	source address register	86
	6.4.6 DMA	Destination Address Register	

6.4.7 DMA cycle source start address register	 	86
6.4.8 DMA cycle destination start address register	 	87
6.4.9 DMA Cycle Length Register	 	87
6.4.10 DMA channel control register	 	87
6.4.11 DMA mode selection register	 	88
6.4.12 DMA data flow control register	 89	
6.4.13 DMA Transfer Bytes Register	91	
6.4.14 DMA linked list entry address register)	91
6.4.15 DMA Current Destination Address Register		91
7 General Hardware Encryption Module	 	93
7.1 Function overview	 	93
7.2 Main features	 	93
7.3 Function description	 	93
7.3.1 SHA1 encryption	 	93
7.3.2 MD5 encryption	 	93
7.3.3 RC4 Encryption	 	94
7.3.4 DES encryption	 	94
7.3.5 3DES encryption	 	94
7.3.6 AES encryption	 	94
7.3.7 CRC Encryption	 	94
7.3.8 TRNG random number generator	 	95
7.4 Register Description	 	

7.4.1	Register List	
7.4.2	Configuration Register	
7.4.3 TF	NG control register	100
7.4.4 Cc	ntrol registers	101
7.4.5 St	atus register	102
SA encryption modu	le	103
8.1 Function ove	view	
8.2 Main feature		103
8.3 Function des	cription	
8.3.1	Modular multiplication function	
8.4 Register des	pription	103
8.4.1	Register List	103
8.4.2 Da	ta X register	104
8.4.3 Da	ta Y register	104
8.4.4 Da	ta M register	104
8.4.5 Da	ta D register	104
8.4.6 RS	SA Control Register	105
8.4.7 Pa	rameter MC register	106
8.4.8 Pa	rameter N register	106
PIO module		107
9.1 Function ove	view	107
9.2 Main features		

9.3 Function description	107
9.4 Register Description	108
9.4.1 Register List	108
9.4.2 GPIO data register	110
9.4.3 GPIO data enable register111	
9.4.4 GPIO Direction Control Register	111
9.4.5 GPIO pull-up and pull-down control register	
9.4.6 GPIO multiplexing selection register	113
9.4.7 GPIO multiplexing selection register 1	115
9.4.8 GPIO multiplexing selection register 0	115
9.4.9 GPIO interrupt trigger mode configuration register	116
9.4.10 GPIO interrupt edge trigger mode configuration register	117
9.4.11 GPIO interrupt upper and lower edge trigger configuration register	
9.4.12 GPIO interrupt enable configuration register	
9.4.13 GPIO Raw Interrupt Status Register	119
9.4.14 GPIO Masked Interrupt Status Register	119
9.4.15 GPIO interrupt clear control register	120
10 High Speed SPI Device Controller	121
10.1 Function overview	121
10.2 Main features	121
10.3 Functional description	121
10.3.1 Introduction to SPI protocol	

10.3.2 SPI working process	122
10.4 Register Description	122
10.4.1 Register list of internal operation of HSPI chip	122
10.4.2 Register list of host accessing HSPI controller	126
10.4.3 High-Speed SPI Device Controller Interface Timing	131
11 SDIO device controller	142
11.1 Function overview	142
11.2 Main features	142
11.3 Function description	142
11.3.1 SDIO bus	142
11.3.2 SDIO commands	143
11.3.3 SDIO internal storage	143
11.4 Register Description	145
11.4.1 Register List	145
11.4.2 SDIO Fn0 register	145
11.4.3 SDIO Fn1 register	158
12 HSPI/SDIO Wrapper Controller	9
12.1 Function overview	169
12.2 Main features	169
12.3 Functional description	170
12.3.1 Uplink data receiving function	170
12.3.2 Downlink data migration function	171

12.4 Register description	171
12.4.1 Register List	171
12.4.2 WRAPPER interrupt status register	173
12.4.3 WRAPPER interrupt configuration register	173
12.4.4 WRAPPER uplink command ready register	173
12.4.5 WRAPPER downlink command buf ready register	174
12.4.6 SDIO TX Link Enable Register	. 174
12.4.7 SDIO TX link address register	175
12.4.8 SDIO TX enable register 175	
12.4.9 SDIO TX status register	175
12.4.10 SDIO RX link enable register176	
12.4.11 SDIO RX link address register	176
12.4.12 SDIO RX enable register 177	,
12.4.13 SDIO RX Status Register	177
12.4.14 WRAPPER CMD BUF base address register	178
12.4.15 WRAPPER CMD BUF SIZE register	178
13 SDIO HOST device controller	179
13.1 Function overview	179
13.2 Main features	179
13.3 Function description	179
13.4 Register Description	180
13.4.1 Register List	180

14 SPI controller	201
14.1 Function overview	201
14.2 Main features	201
14.3 Function description	201
14.3.1 Master-slave configurable	201
14.3.2 Multiple Mode Support	
14.3.3 Efficient data transfer	
14.4 Register description	202
14.4.1 Register List	202
14.4.2 Channel configuration register	203
14.4.3 SPI configuration register	
14.4.4 Clock Configuration Register	210
14.4.5 Mode configuration register	
14.4.6 Interrupt Control Register	
14.4.7 Interrupt Status Register	
14.4.8 SPI Status Register	216
14.4.9 SPI Timeout Register	
14.4.10 Data Transmit Register	217
14.4.11 Transfer Mode Register	218
14.4.12 Data Length Register	220
14.4.13 Data Receive Register	221
15 I2C controller	222

15.1 Function overview	
15.2 Main features	
15.3 Function description	
15.3.1 Transmission rate selection	
15.3.2 Interruption and start-stop controllable	
15.3.3 Fast output and detection signal	
15.4 Register description	
15.4.1 Register List	
15.4.2 Clock divider register_1	
15.4.3 Clock divider register_2	
15.4.4 Control registers	
15.4.5 Data registers	
15.4.6 Transceiver control register	
15.4.7 TXR readout register	
15.4.8 CR read register	
16 I2S controller	
16.1 Function overview	
16.2 Main features	
16.3 Function description	
16.3.1 Multiple Mode Support	
16.3.2 Zero-cross detection	
16.3.3 Efficient data transfer	

16.4 I2S/PCM Timing Diagram	
16.5 FIFO storage structure diagram	
16.6 I2S module working clock configuration	
16.7 Other function descriptions:	
16.7.1 Zero Crossing Detection:	
16.7.2 Mute function	
16.7.3 Interrupts	
16.7.4 FIFO status query	
16.8 Data transmission process	
16.8.1 The master sends audio data	
16.8.2 Receive audio data from the end	
16.8.3 The master receives audio data	
16.8.4 Send audio data from the end	
16.8.5 Full duplex mode	
16.9 Register description	
16.9.1 Register List	
16.9.2 Control registers	
16.9.3 Interrupt mask register	
16.9.4 Interrupt Flag Register	
16.9.5 Status register	
16.9.6 Data Transmit Register	
16.9.7 Data Receive Register	

RT module	
17.1 Function overview	
17.2 Main features	257
17.3 Function description	
17.3.1 UART baud rate	
17.3.2 UART data format	
17.3.3 UART hardware flow control	
17.3.4 UART DMA transfer	
17.3.5 UART interrupt	
17.4 Register Description	261
17.4.1 Register List	
17.4.2 Data Flow Control Register	
17.4.3 Automatic hardware flow control registers	
17.4.4 DMA setup register	
17.4.5 FIFO control register	
17.4.6 Baud rate control register	
17.4.7 Interrupt mask register	
17.4.8 Interrupt Status Register	
17.4.9 FIFO status register	
17.4.10 TX start address register	
	270

18.1 Function overview	271
18.2 Main features	271
18.3 UART function description	272
18.4 7816 Functional Description	272
18.4.1 Introduction to 7816	272
18.4.2 7816 interface	272
18.4.3 7816 configuration	273
18.4.4 7816 clock configuration	273
18.4.5 7816 rate setting	
18.4.6 7816 power-on reset	275
18.4.7 7816 warm reset	
18.4.8 7816 deactivation process	276
18.4.9 7816 data transfer	. 277
18.4.10 UART&7816 DMA transfer 277	
18.4.11 UART&7816 Interrupt	278
18.5 Register Description	278
18.5.1 Register List	
18.5.2 Data Flow Control Register	279
18.5.3 Automatic hardware flow control registers	282
18.5.4 DMA setup register	283
18.5.5 FIFO Control Register	284
18.5.6 Baud Rate Control Register	285

18.5.7 Interrupt Mask Register	
18.5.8 Interrupt Status Register	
18.5.9 FIFO status register	
18.5.10 TX start address register	289
18.5.11 RX start address register	
18.5.12 7816 guard time register	290
18.5.13 7816 timeout time register	
19 Timer module	291
19.1 Function overview	
19.2 Main features	291
19.3 Functional description	
19.3.1 Timing function	
19.3.2 Delay function	
19.4 Register Description	
19.4.1 Register List	
19.4.2 Standard us configuration registers	293
19.4.3 Timer Control Register	293
19.4.4 Timer 1 timing value configuration register	ÿ 295
19.4.5 Timer 2 timing value configuration register	ÿ 295
19.4.6 Timer 3 timing value configuration register	ÿ 295
19.4.7 Timer 4 timing value configuration register	ÿ 295
19.4.8 Timer 5 timing value configuration register	ÿ 296

19.4.9 Timer 6 timing value configuration register	ÿ 296
19.4.10 Timer 1 Current Count Value Register	
19.4.11 Timer 2 current count value register	
19.4.12 Timer 3 current count value register	
19.4.13 Timer 4 current count value register	
19.4.14 Timer 5 current count value register	
19.4.15 Timer 6 current count value register	
20 power management module	
20.1 Function overview	
20.2 Main features	
20.3 Function description	
20.3.1 Full-chip power control	
20.3.2 Low Power Modes	
20.3.3 Wake-up Mode	
20.3.4 Timer0 timer	301
20.3.5 Real Time Clock Function	
20.3.6 32K clock source switching and calibration	
20.4 Register description	
20.4.1 Register List	
20.4.2 PMU Control Registers	
20.4.3 PMU Timer 0	
20.4.4 PMU interrupt source registers	306

21 Real-time clock module	
21.1 Function overview	308
21.2 Main features	
21.3 Function description	308
21.3.1 Timer function	
21.3.2 Timing function	
21.4 Register description	
21.4.1 Register List	
21.4.2 RTC configuration register 1	
21.4.3 RTC configuration register 2	
22 Watchdog module	
22.1 Function overview	311
22.2 Main features	
22.3 Function description	311
22.3.1 Timing function	
22.3.2 Reset function	
22.4 Register Description	312
22.4.1 Register List	
22.4.2 WDG timing value load register	
22.4.3 WDG current value register	
22.4.4 WDG Control Register	
22.4.5 WDG Interrupt Clear Register	

22.4.6 WDG interrupt source register	
22.4.7 WDG Interrupt Status Register	
23 PWM controller	
23.1 Function overview	
23.2 Main features	
23.3 Function description	
23.3.1 Input signal capture	
23.3.2 Number of DMA transfer captures	
23.3.3 Support for one-shot and automount modes	
23.3.4 Multiple Output Modes	
23.4 Register Description	
23.4.1 List of PWM registers	
23.4.2 Clock divider register_01	
23.4.3 Clock divider register_23	
23.4.4 Control registers	
23.4.5 Period Register	
23.4.6 Cycle Count Register	
23.4.7 Compare Register	324
23.4.8 Dead Time Control Register	
23.4.9 Interrupt Control Register	
23.4.10 Interrupt Status Register	
23.4.11 Channel 0 Capture Register	

2	23.4.12 Brake	Control Register		 330	
2	23.4.13	Clock Divider Register_4		 	1
2	23.4.14 Chanr	nel 4 Control Register_1		 . 332	
2	23.4.15 Chanr	nel 4 capture register		 34	
2	23.4.16 Chanr	nel 4 Control Register_2		 . 335	
24 QFLASH co	ontroller			 339	
24.1 Fun	nction overview	<i>v</i>		3	39
24.2 Mai	in features			 339	
24.3 Fun	nctional descrip	otion			339
2	24.3.1 Bus acc	Cess		339	
2	24.3.2 Registe	er access		 	339
2	24.3.3 Configu	iration and startup of comr	nands	 	. 339
24.4 Reg	gister Descripti	on	O_{1}	 3	42
2	24.4.1 Registe	er List		 	342
2	24.4.2 Comma	and Information Register		 	342
2	24.4.3 Comma	and Start Register		 	343
24.5 Con	mmon commar	nds of QFLASH		 	344
25 PSRAM inte	erface controlle	ər		 346	
25.1 Fun	nction overview	V		 3	46
25.2 Mai	in features			 	
25.3 Fun	nction descripti	on		 3	46
2	25.3.1 Pin Des	scription		 34	6

	25.3.2 Access mode settings			7
	25.3.3 PSRAM initialization			
	25.3.4 PSRAM access method		348	
	25.3.5 BURST function			
25.4 R	Register description		349	
	25.4.1 Register List		349	
	25.4.2 Command Information Register			349
	25.4.3 Timeout Control Register			50
26 ADC		351		
26.1 A	DC Functional Overview		351	
26.2 A	DC main features		351	
26.3 A	DC Functional Description		351	
	26.3.1 Basic structure of the module		351	
	26.3.2 Channel selection		351	
	26.3.3 Data Comparison		352	
	26.3.4 PGA Gain Adjustment Instructions		352	
	26.3.5 VCMIN Adjustment Instructions for Single-Ended Mode			353
	26.3.6 Bypass mode		353	
	26.3.7 Supplementary explanation of SDADC output code			353
	26.3.8 Input signal voltage range		354	
26.4 R	Register Configuration for Typical Use Cases		355	
	26.4.1 Offset measurement			355

	26.4.2 Differential Input Mode	
	26.4.3 Single-Ended Input Mode	35
	26.4.4 Temperature detection mode	
	26.4.5 Voltage detection mode	
26.5 AD	C register description	359
	26.5.1 Register List	359
	26.5.2 ADC Result Register	359
	26.5.3 ADC Analog Configuration Register	360
	26.5.4 PGA configuration register	
	26.5.5 TEMP Configuration Register	
	26.5.6 ADC function configuration register	
	26.5.7 ADC Interrupt Status Register	365
	26.5.8 Compare Threshold Register	
7 Touch Sens	sor	
27.1 Ov	erview of module functions	6
27.2 Ins	tructions for use of functions	366
	27.2.1 Basic workflow	367
27.3 Re	gister List:	
	27.3.1 Touch Sensor Control Register	368
	27.3.2 Touch key single channel control register	369
	27.3.3 Interrupt Control Register	
28 W800 secu	rity architecture design	

28.1 Function overview	371
28.1.1 SRAM Security Access Controller (SASC)	371
28.1.2 Trusted IP Controller (TIPC)	372
28.2 Block diagram of security architecture	
28.3 Register description	372
28.3.1 SASC register list	373
28.3.2 TIPC register	
28.4 Instructions for use	
28.4.1 Memory Security Access (SASC)	383
28.4.2 Trusted Access to Peripherals	
29 Appendix 1. Definition of chip pins	387
29.1 Chip pinout	387
29.2 Chip pin multiplexing relationship	
statement	91

Figure catalog

Figure 1 W800 chip structure diagram	43
Figure 2 W800 bus structure diagram	
Figure 3 W800 clock structure	1
Figure 5 System clock frequency division relationship	
Figure 6 SPI send and receive data format of upper computer	
Figure 7 HSPI register read operation (big endian mode)	
Figure 8 HSPI Register Write Operation (Big Endian Mode)	
Figure 9 Register read operation (little endian mode)	133
Figure 10 Register write operation (little endian mode)	133
Figure 11 Port read operation (big endian mode)	133
Figure 12 Port write operation (big endian mode)	134
Figure 13 Port read operation (little endian mode)	134
Figure 14 Port write operation (little endian mode)	134
Figure 15 CPOL=0, CPHA=0	135
Figure 16 CPOL=0, CPHA=1	135
Figure 17 CPOL=1, CPHA=0	3
Figure 18 CPOL=1, CPHA=1	3
Figure 19 Main SPI processing interrupt flow	137
Figure 20 Flow chart of downlink data	138
Figure 21 Downlink command flow chart	139
Figure 22 Uplink data (command) flow chart	140

Figure 23 SDIO Internal Memory Mapping	144
Figure 24 CCCR register storage structure	
Figure 25 FBR1 register structure	146
Figure 26 CIS storage space structure	146
Figure 27 SDIO Receive BD Descriptor	170
Figure 28 SDIO Send BD Descriptor	171
Figure 29 UART data length258	3
Figure 30 UART stop bit259	
Figure 31 UART parity bits	259
Figure 32 UART hardware flow control connection	260
Figure 33 7816 Connection Diagram	273
Figure 34 7816 power-on reset sequence	
Figure 35 7816 warm reset276	
Figure 36 7816 inactivation process	276
Figure 37 7816 data transmission	277
Figure 38 W800 chip pin distribution	387
table directory	
Table 1 List of AHB-1 bus masters	45
Table 2 AHB-1 bus slave device list	45
Table 3 AHB-2 bus master list	
Table 4 AHB-2 bus slave device list	47
table 5 Detailed division of bus device address space	50

Table 6 Startup configuration	55
Table 8 Clock reset module register list	
Table 9 Software Clock Gating Enable Register	61
Table 10 Software clock mask register	. 65
Table 11 Software reset control register	66
Table 12 Clock frequency division configuration register	
Table 13 Clock selection register	
Table 14 I2S clock control register	
Table 14 Reset Status Register	
Table 15 DMA address assignment)
Table 16 DMA register list	
Table 17 DMA interrupt mask register	83
Table 18 DMA Interrupt Status Register	84
Table 19 UART selection register	
Table 20 DMA source address register	6
Table 21 DMA destination address register	86
Table 22 DMA cycle source start address register	86
Table 23 DMA cycle destination start address register	
Table 24 DMA Cycle Length Register	87
Table 25 DMA channel control register	87
Table 26 DMA mode selection register	88
Table 27 DMA data flow control register)

Table 28 DMA transfer byte count register	91
Table 29 DMA linked list entry address register	91
Table 30 DMA current destination address register	91
Table 31 Encryption module register list	
Table 32 Encryption module configuration register	
Table 33 TRNG module control register	100
Table 33 Encryption module control register	101
Table 34 Encryption module status register	102
Table 35 RSA register list	103
Table 36 RSA data X register	104
Table 37 RSA Data Y Register	104
Table 38 RSA data M register	104
Table 39 RSA data D register	105
Table 40 RSA Control Register	105
Table 41 RSA parameter MC register	106
Table 42 RSA parameter N register	106
Table 43 GPIOA register list	108
Table 44 GPIOB register list	109
Table 45 GPIOA data register110	
Table 46 GPIOB data register110	
Table 47 GPIOA data enable register	111
Table 48 GPIOB data enable register	111

	联盛德微电子
Table 49 GPIOA direction control register	111
Table 50 GPIOB direction control register	112
Table 51 GPIOA pull-up control register	112
Table 52 GPIOB pull-down control register	113
Table 53 GPIOA multiplexing selection register	
Table 54 GPIOB multiplexing selection register	
Table 55 GPIOA multiplexing selection register 1	
Table 56 GPIOB multiplexing selection register 1	
Table 57 GPIOA multiplexing selection register 0	
Table 58 GPIOB multiplexing selection register 0	
Table 59 GPIOA interrupt trigger mode configuration register	116
Table 60 GPIOB interrupt trigger mode configuration register	116
Table 61 GPIOA interrupt edge trigger mode configuration register	117
Table 62 GPIOB interrupt edge trigger mode configuration register	117
Table 63 GPIOA interrupt upper and lower edge trigger configuration register	
Table 64 GPIOB interrupt upper and lower edge trigger configuration register	
Table 65 GPIOA interrupt enable configuration register	118
Table 66 GPIOB interrupt enable configuration register	118
Table 67 GPIOA raw interrupt status register	119
Table 68 GPIOB raw interrupt status register	119
Table 69 GPIOA Masked Interrupt Status Register	119
Table 70 GPIOB Masked Interrupt Status Register	119

W Winner Micro

Table 71 GPIOA interrupt clear control register.....120 Table 75 HSPI configuration register......124 Table 76 HSPI mode configuration register.....124 Table 77 HSPI Interrupt Configuration Register125 Table 78 HSPI Interrupt Status Register125 Table 79 HSPI data upload length register......126 Table 80 HSPI interface configuration register (master device access)126 Table 81 HSPI get data length register......128 Table 83 HSPI Interrupt Configuration Register.....129 Table 84 HSPI interrupt status register.....129 Table 85 HSPI data port 0......129 Table 86 HSPI data port 1......130 Table 87 HSPI command port 0......130 Table 88 HSPI command port 1......131 Table 89 List of SDIO CCCR registers and FBR1 registers.....146 Table 91 Some registers of SDIO Fn1 (accessed by HOST)159

inner Micro

Table 93 WRAPPER controller registers	171
Table 94 WRAPPER interrupt status register	173
Table 95 WRAPPER interrupt configuration register	173
Table 96 WRAPPER uplink command ready register	173
Table 97 WRAPPER downlink command buf ready register	174
Table 98 SDIO TX link enable register	
Table 99 SDIO TX link address register	
Table 100 SDIO TX enable register	175
Table 101 SDIO TX status register	175
Table 102 SDIO RX link enable register	176
Table 103 SDIO RX link address register	176
Table 104 SDIO RX enable register	177
Table 105 SDIO RX status register	177
Table 106 WRAPPER CMD BUF base address register	178
Table 107 WRAPPER CMD BUF SIZE register	178
Table 108 SPI register list	202
Table 109 SPI channel configuration register	
Table 110 SPI configuration register	207
Table 111 SPI clock configuration register	210
Table 112 SPI mode configuration register	211
Table 113 SPI Interrupt Control Register	212
Table 114 SPI interrupt status register	

Table 115 SPI status register	
Table 116 SPI timeout register	217
Table 117 SPI data transmit register	
Table 118 SPI transfer mode register	
Table 119 SPI data length register	
Table 120 SPI data receive register	
Table 121 I2C register list	
Table 122 I2C clock frequency division register_1	
Table 123 I2C clock frequency division register_2	
Table 124 I2C Control Register	
Table 125 I2C data register	
Table 126 I2C transceiver control register	226
Table 127 I2C TXR readout register	
Table 128 I2C CR readout register	
Table 129 I2S register list	243
Table 130 I2S Control Register	244
Table 131 I2S interrupt mask register	
Table 132 I2S interrupt flag register	251
Table 133 I2S status register	
Table 134 I2S data transmission register	256
Table 135 I2S Data Receive Register	256
Table 136 UART register list	

Table 137 UART data flow control register	
Table 138 UART automatic hardware flow control register	263
Table 139 UART DMA setup register	264
Table 140 UART FIFO control register	
Table 141 UART baud rate control register	266
Table 142 UART interrupt mask register	
Table 143 UART interrupt status register	
Table 144 UART FIFO status register	
Table 145 UART TX start address register	269
Table 146 UART RX start address register	270
Table 147 7816 rate setting274	4
Table 148 UART&7816 register list278	
Table 149 UART&7816 data flow control register	279
Table 150 UART&7816 automatic hardware flow control register	
Table 151 UART&7816 DMA setting register	
Table 152 UART&7816 FIFO control register	
Table 153 UART&7816 baud rate control register	
Table 154 UART&7816 interrupt mask register	
Table 155 UART&7816 interrupt status register	
Table 156 UART&7816 FIFO status register	5
Table 157 UART&7816 TX start address register	
Table 158 UART&7816 RX start address register	289

Table 159 7816 guard time register	290
Table 160 7816 timeout time register	290
Table 161 Timer register list	292
Table 162 Timer standard us configuration register	293
Table 163 Timer timer control register	
Table 164 Timer 1 timing value configuration register	
Table 165 Timer 2 timing value configuration register	
Table 166 Timer 3 timing value configuration register	
Table 167 Timer 4 timing value configuration register	
Table 168 Timer 5 timing value configuration register	
Table 169 Timer 6 timing value configuration register	
Table 170 PMU register list	
Table 171 PMU Control Register	302
Table 172 PMU timer 0 register	
Table 173 PMU interrupt source register	306
Table 174 RTC register list	309
Table 175 RTC configuration register 1	
Table 176 RTC configuration register 2	
Table 177 WDG register list	
Table 178 WDG timing value loading register	312
Table 179 WDG current value register	313
Table 180 WDG Control Register	313

Table 181 WDG Interrupt Clear Register	313
Table 182 WDG interrupt source register	
Table 183 WDG interrupt status register	314
Table 184 PWM register list	
Table 185 PWM clock frequency division register_01	
Table 186 PWM clock frequency division register_23	
Table 187 PWM Control Register	
Table 188 PWM period register	322
Table 189 PWM cycle count register	324
Table 190 PWM compare register	
Table 191 PWM dead zone control register	
Table 192 PWM Interrupt Control Register	
Table 193 PWM Interrupt Status Register	
Table 194 PWM channel 0 capture register	330
Table 195 PWM brake control register	330
Table 196 PWM clock frequency division register_4	
Table 197 PWM channel 4 control register_1	
Table 198 PWM channel 4 capture register	
Table 199 PWM channel 4 control register_2	
Table 200 QFLASH controller register list	
Table 201 QFLASH command information register	
Table 202 QFLASH command start register	

Table 203 QFALSH common commands	.344
Table 200 PSRAM controller register list	349
Table 201 PSRAM control setting register	349
Table 201 CS timeout control register	C
Table 200 Touch Sensor controller register list	
Table 201 Touch Sensor Control Setting Register	
Table 201 Touch key single channel setting register	
Table 201 Touch key interrupt control register	69
Table 204 Chip pin multiplexing relationship	389

1 Introduction

1.1 Purpose of writing

The W800 chip is an embedded Wi-Fi SoC chip launched by Lianshengde Microelectronics. The chip is highly integrated, requires few peripheral devices, and is cost-effective.

high. Applicable to various smart products in the IoT (smart home) field. Highly integrated Wi-Fi and Bluetooth 4.2 Combo function is its main function;

In addition, the chip integrates XT804 core, built-in QFlash, SDIO, SPI, UART, GPIO, I²C, PWM, I²S, 7816, LCD,

Touch Sensor and other interfaces support multiple hardware encryption and decryption algorithms. In addition, the chip MCU contains a security kernel, which supports code security permission setting

The whole system supports various security measures such as firmware encrypted storage, firmware signature, security debugging, and security upgrade to improve product security features.

This document mainly describes the internal structure of the W800 chip, the information of each functional module and the detailed register usage information; it is a guide for developers to develop drivers,

The main reference material for the application. There are open source implementations of various functions in the SDK provided by Lianshengde Microelectronics. Developers can refer to the corresponding driver

Programs, application examples to increase understanding of chip functions and register descriptions. This document does not describe the registers of the Wi-Fi/BT part.

1.2 References

For W800 chip packaging parameters, electrical characteristics, radio frequency parameters and other information, please refer to "W800 Chip Product Specifications";

The W800 chip integrates a ROM program, which provides functions such as downloading firmware, reading and writing MAC addresses, and reading and writing Wi-Fi parameters.

For more information, please refer to "WM_W800_ROM Function Brief";

The W800 chip has a built-in 2Mbytes QFlash memory as a storage space for codes and parameters. This document provides the basic operation of QFlash

for information. If you have requirements beyond the scope of this document, you need to refer to the QFlash manual;

W800 chip adopts Hangzhou Pingtouge XT804 core, 804-related function introduction, development materials, etc. can refer to the information released by Pingtouge company;

For more information, please refer to the Winnermicro website (http://www.winnermicro.com/).

2 features

ÿ Chip packaging

ÿ QFN32 package, 4mm x 4mm.

ÿ Chip integration

ÿ Integrated XT804 processor, up to 240MHz

ÿ Integrated 288KB SRAM

ÿ Integrated 2MB FLASH

ÿ Integrated 8-channel DMA controller, supports 16 hardware applications, and supports software linked list management

ÿ Integrated PA/LNA/TR-Switch

ÿ Integrated 32.768KHz clock oscillator

ÿ Integrated voltage detection circuit

ÿ Integrated LDO

ÿ Integrated power-on reset circuit

ÿ Chip interface

ÿ Integrate 1 SDIO2.0 Device controller, support SDIO 1-bit/4-bit/SPI three operation modes, working clock range 0~50MHz

ÿ Integrate 1 SDIO 2.0 HOST controller, support SDIO and SD card operation, working clock range 0~50MHz

ÿ Integrate a QSPI PSRAM interface, support PSRAM with a maximum capacity of 64MB, and a maximum operating clock frequency of 80MHz;

ÿ Integrate 5 UART interfaces, support RTS/CTS, baud rate range 1200bps~2Mbps

ÿ Integrate a high-speed SPI slave device interface, the working clock range is 0~50MHz

ÿ Integrate 1 SPI master/slave interface, the working clock of the master device is up to 20MHz, and the slave device supports a data transmission rate of up to 6Mbps

ÿ Integrate an I2C controller, support 100/400Kbps rate

ÿ Integrated PWM controller, supports 5-way PWM

Single output or 2-way PWM input. Maximum output frequency 20MHz, maximum input frequency 20MHz

ÿ Integrated duplex I2S controller, support 32KHz to 192KHz I2S interface codec

ÿ Integrate a 7816 interface, compatible with UART interface, support ISO-7816-3 T=0.T=1 mode; support

EVM2000 protocol

ÿ Support multiple hardware encryption and decryption modes, including

RSA/AES/RC4/DES/3DES/RC4/SHA1/MD5/CRC8/CRC16/CRC32/TRNG

ÿ Integrate one differential or two single-ended 12bit ADC interfaces;

ÿ Integrated 11-way Touch Sensor;

ÿ Support up to 17 GPIO ports, each IO port has

Rich reuse relationship. With input and output configuration options.

ÿ WIFI protocol and function

ÿ Support GB15629.11-2006, IEEE802.11 b/g/n;

ÿ Support WMM/WMM-PS/WPA/WPA2/WPS

ÿ Support WiFi Direct;

- ÿ Support EDCA channel access mode;
- ÿ Support 20/40M bandwidth working mode;
- ÿ Support STBC, GreenField, Short-GI, support reverse transmission;
- ÿ Support RIFS frame interval;
- ÿ Support AMPDU, AMSDU;
- ÿ Support 802.11n MCS 0~7, MCS32 physical layer transmission rate stalls, the maximum transmission rate is 150Mbps;
- ÿ Support HT-immediate Compressed BlockAck, normal ACK, no ACK response mode;
- ÿ Support CTS to self;
- ÿ Support AP function; AP and STA can be used at the same time;
- ÿ In the BSS network, multiple multicast networks are supported, and the encryption methods of each multicast network are different.
 - 32 multicast networks and inbound STA encryption;
- ÿ When the BSS network is used as an AP, the total number of supported stations and groups is 32;
- ÿ Receive sensitivity:
 - ÿ 20MHz MCS7@-71dBm@10%PERÿ
 - ÿ 40MHz MCS7@-67dBm@10%PERÿ
 - ÿ 54Mbps@-73dBm@10%PERÿ
 - ÿ 11Mbps@-86dBm@8%PERÿ
 - ÿ 1Mbps@-96dBm@8%PERÿ
- ÿ Support a variety of received frame filtering options;
- ÿ Support monitoring function;
- ÿ Bluetooth protocol and functions

ÿ Integrated Bluetooth baseband processor/coprocessor, support BT/BLE4.2 protocol

ÿ Support various rates of DR/EDR;

ÿ Support BLE 1Mbps rate;

ÿ Power supply and power consumption

ÿ 3.3V single power supply;

ÿ Support Wi-Fi power saving mode power management;

ÿ Support work, sleep, standby, shutdown working modes;

ÿ Standby power consumption is less than 15uA;

3 Overview

This chip is a SOC chip that supports multi-interface and multi-protocol wireless LAN 802.11n (1T1R). The SOC chip integrates emitter

RF Transceiver, CMOS PA Power Amplifier, Baseband Processor/Media Access Control, SDIO, SPI,

Low-power WLAN chip with UART, GPIO and other interfaces.

The W800 chip supports GB15629.11-2006, IEEE802.11 b/g/ n protocols, and supports STBC, Green Field,

Short-GI, Reverse Transfer, RIFS Frame Interval, AMPDU, AMSDU, T-immediate Compressed Block Ack,

Rich protocols and operations such as normal ACK, no ACK, CTS to self, etc.

The W800 chip integrates the RF transceiver front-end, A/D and D/A converters. It supports DSSS (Direct Sequence Spread Spectrum) as well as OFDM

(Orthogonal Frequency Division Multiplexing) modulation mode, with data descrambling capability, supports a variety of different data transmission rates. The analog front end of the transceiver

The equipped transceiver AGC function enables the system-on-a-chip to obtain the best performance. The W800 chip also includes a built-in enhanced signal monitor,

The influence of multipath effect can be largely eliminated.

In terms of security, the W800 chip not only supports the national standard WAPI encryption, but also supports the international standard WEP, TKIP, CCMP encryption,

These hardware components enable the data transmission system based on this chip to still obtain data close to that of non-encrypted communication during secure communication.

Data transfer performance.

In addition to supporting the energy-saving operation specified by IEEE802.11 and Wi-Fi protocol, the W800 chip also supports user-defined energy-saving solutions. chip

It supports four working modes: work, sleep, standby, and shutdown, so that the entire system can achieve low power consumption, and it is convenient for users to

Scenarios define different energy-saving solutions.

The W800 chip integrates a high-performance 32-bit embedded processor, a large amount of memory resources, and rich peripheral interfaces, which is convenient for users

It is easy to apply the chip to the secondary development of specific products.

The W800 chip supports the AP function, which can realize the establishment of 5 SSID networks at the same time, and realize the function of 5 independent APs. Supports building multiple

Multicast network function. It can realize the function of establishing a BSS network as an AP while joining other networks as a STA.

W800 chip supports WPS mode, so that users can realize encrypted complete network with one-button operation to ensure information security

sex.

The multi-function and high integration of W800 chip ensure that the WLAN system does not need too many off-chip circuits and external memory.

4 chip structure

4.1 Chip structure

The figure below describes the overall structure of W800 chip, the core part includes XT804 CPU, 288KB SRAM and 20KB ROM storage space.

The PMU part is used as the constant power supply module of the chip to provide power-on sequence management, start-up clock, real-time clock functions, etc. Provides a rich set of peripherals

function and hardware encryption and decryption functions. The Wi-Fi part integrates MAC, BB and RF.

Figure 1 W800 chip structure diagram

4.2 Bus structure

The W800 chip consists of a two-level bus, as shown in the figure below

Figure 2 W800 bus structure diagram

(1) AHB-1 bus

This level of bus has four master devices - XT804, DMA, GPSEC and 5 slave devices.

XT804 is a 32-bit high-energy-efficiency embedded CPU core oriented to the control field. It adopts a 16/32-bit mixed coding instruction system and is designed

A streamlined and efficient 3-stage pipeline.

XT804 provides a variety of configurable features, including hardware floating point unit, on-chip cache, DSP acceleration unit, trusted protection technology,

On-chip tightly coupled IP, etc., users can configure according to application needs. In addition, XT804 provides multi-bus interface, supports system bus, pointer

Flexible configuration of command bus and data bus. XT804 has made a special acceleration for interrupt response, and the interrupt response delay only needs 13 cycles.

The bus clock works at the fastest frequency of 240MHz, and can be configured as 240/160/120/80/40MHz, or lower.

Table 1 AHB-1 bus master list

master device	Function	
CPU	Complete chip register configuration, memory management and use, and complete 802.11MAC protocol. Highest	
CPU	Operating frequency 240MHz	
DMA supports an independent 8-channel DMA module with a linked list structure, and supports 16 hardware DMA request sources on-chip.		
GPSEC	General encryption module, support DES/3DESSHA1/AES/MD5/RC4/CRC/PRDN. automatic completion	
	The data blocks in the specified memory space are encrypted and written back.	

Table 2 AHB-1 bus slave device list

Slave function		
	ROM is used to store the initialization firmware after the CPU is powered on.	
ROM	Mainly complete the initial configuration of the chip register space and other work. After completing the above work, control the CPU	
	The control is handed over to the firmware stored in FLASH.	
$\langle \rangle$	Complete the conversion of CPU bus clock domain to BusMatrix2 bus clock domain master access. Require	
АНВ2АНВ	The clock domain must be of the same source, and the ratio of the CPU clock to the BusMatrix2 clock frequency is M: 1, M	
	is an integer greater than or equal to 1.	
FLASH stores firmware code and operating parameters.		
The 160KB of SRAM can be	used to store instructions or data, and the firmware can use this memory as needed.	
RSA	Support up to 2048bit RSA encryption and decryption operations	

GPSEC general encrypt	GPSEC general encryption/decryption module, supports SHA1/AES/MD5/RC4/CRC/TRNG. Autocomplete means			
	Encrypt/decrypt data blocks in a given memory space and write them back.			
SDIO_HOST SDIO 2.0 stand	ard SDIO HOST controller; can access SDIO interface peripherals through this interface.			
	The SDIO interface clock is obtained by dividing the frequency of the bus clock, and the maximum support is 50MHz.			
PSRAM_CTRL PSRAM contr	oller for QSPI interface. External PSRAM can be accessed through this controller. QSPI interface			
	The port clock is obtained by dividing the frequency of the bus clock, and supports up to 80MHz clock.			

(2) AHB-2 bus

This bus has 4 master devices and 3 slave devices, using a crossbar connection structure, which can realize different master devices to different slave devices

Simultaneous access, thereby increasing the bandwidth. The bus clock works at the fastest frequency of 40MHz, and can be configured to be lower as required.

master device	Function	
мас	802.11MAC control protocol processing module. Operations on the bus mainly consist of sending reads	
	data, receive write data, and send operations such as writing back of completion descriptors.	
	The security module completes the encryption, decryption and transfer of sent and received data. When sending, the data will be sent and the	
SEC	The MAC descriptor is moved to the specified location, and encryption is completed; when receiving, the received data and	
	The MAC receive descriptor is moved to the specified location and decryption is completed.	
AHB2AHB	Conversion of bus master access from the AHB-1 bus to the AHB-2 bus.	
	Connect the host to the chip through SDIO2.0 device controller or high-speed SPI slave device controller	
- SDIONSPI	Accesses are converted to AHB bus signals and access to content memory and register space.	

Table 3 AHB-2 bus master list

Each master device adopts a fixed priority, and the priority decreases from top to bottom.

Table 4 AHB-2 bus slave device list

slave device	Function
SRAM 128KB	Used to store uplink and downlink data cache, SDIO/SPI/UART interface uses this RAM as
	data cache
Configuration register config	uration space, where the high-speed module configuration registers are uniformly addressed.
APB All low-speed r	nodules access space, and various low-speed modules are connected by APB bus.
BT_CORE Bluetooth co	ntroller.

4.3 Clock structure

W800 uses a 24/40MHz crystal as the SoC clock source, and a built-in DPLL outputs 480MHz to supply

Used by CPU, system bus, data bus and WiFi system; there is also a built-in 32.768KHZ RC oscillator for PMU

And LCD module use. An overview of the clock structure is shown in the figure below.

4.4 Address space

W800 Address Mapping

XT804 supports 4G storage space, which is divided into 6 blocks as shown in the above figure, which are code area, memory area, on-chip peripherals, and off-chip storage

area, off-chip peripherals and system peripherals area. According to requirements, the w800 on-chip storage space is mapped to the first three areas as shown in Figure 3.

bus from	BootMode=0	Address Space Subdivision	on Remark	
equipment				
ROM 0x000	0 0000 ~ 0x0004 FFF	. (Store the solidified firmware code	
FLASH 0x0800 0000 ~ 0x0FFF			stored as a dedicated instruction	
	FFFF		device.	
SRAM 0x20	00 0000 ~ 0x2002		Firmware memory and instruction storage	
	7fff	C	Area	
Mac RAM 0x20	02 8000 ~ 0x2004		SDIO/H-SPI/UART	
	7fff		data cache	
PSRAM	0x3000 000~0x30800000		peripheral memory	
CONFIG 0x4	4000 0000 ~ 0x4000	0x4000 0000 ~ 0x4000 05FF	RSA configuration space	
	2FFF	0x4000 0600 ~ 0x4000 07FF	GPSEC configuration space	
		0x4000 0800 ~ 0x4000 09FF	DMA configuration space	
		0x4000 0A00 ~ 0x4000 0CFF	SDIO_HOST configuration empty	
			binan	
		0x4000 0D00 ~ 0x4000 0DFF	PMU configuration space	
		0x4000 0E00 ~ 0x4000 0EFF	Clock and Reset configuration	

Detailed division of bus device address space

table 5

	r		
			space
		0x4000 0F00 ~ 0x4000 0FFF	MacPHY Router with
			setting space
		0x4000 1000 ~ 0x4000 13FF	BBP configuration space
		0x4000 1400 ~ 0x4000 17FF	MAC configuration space
		0x4000 1800 ~ 0x4000 1FFF	SEC configuration space
		0x4000 2000 ~ 0x4000 21FF	FLASH Controller
		. (configuration space
		0x4000 2200 ~ 0x4000 23FF	PSRAM_CTRL configuration
		space	
	0x4000 2400 ~ 0x4000 25FF	SDIO Slave configuration empty	
		himm	
	0x4000 2600 ~ 0x4000 27FF	H-SPI configuration space	
		0x4000 2800 ~ 0x4000 29FF	SD Wrapper
			configuration space
		0x4000 2A00 ~ 0x4000 A9FF	BT Core configuration space
	\mathbf{Y}	0x4000 B000 ~ 0x4000 B0FF	SASC-B1
			Level 1 bus memory security configuration module
			piece
		0x4000 B100 ~ 0x4000 B1FF	SASC-Flash
			Flash Security Configuration Module
		0x4000 B200 ~ 0x4000 B2FF	SASC-B2

			Secondary bus memory security configuration module
			piece
APB	0x4001 0000 ~ 0x 4001	0x4001 0000 ~ 0x4001 01FF	I2C master
	C000	0x4001 0200 ~ 0x4001 03FF	Sigma ADC
		0x4001 0400 ~ 0x4001 07FF	SPI master
		0x4001 0600 ~ 0x4001 07FF	UART0
		0x4001 0800 ~ 0x4001 09FF	UART1
		0x4001 0A00 ~ 0x4001 0BFF	UART2
		0x4001 0C00 ~ 0x4001 0DFF	UART3
		0x4001 0E00 ~ 0x4001 0FFF	UART4
	/	0x4001 1000 ~ 0x4001 11FF	UART5
	\bigcirc	0x4001 1200 ~ 0x4001 13FF	GPIO-A
		0x4001 1400 ~ 0x4001 15FF	GPIO-B
		0x4001 1600 ~ 0x4001 17FF	WatchDog
		0x4001 1800 ~ 0x4001 19FF	Timer
		0x4001 1A00 ~ 0x4001 1BFF	RF_Controller
		0x4001 1C00 ~ 0x4001 1DFF	LCD
		0x4001 1E00 ~ 0x4001 1FFF	PWM

	0x4001 2000 ~ 0x4001 22FF	128
	0x4001 2200 ~ 0x4001 23FF	BT modem
	0x4001 2400 ~ 0x4001 25FF	Touch Sensor
	0x4001 2600 ~ 0x4001 25FF	TIPC Interface security settings
	0x4001 4000 ~ 0x4000 BFFF	RF_BIST DAC Transmit
		Memory
	0x4001 C000 ~ 0x4003 BFFF	RF_BIST ADC receive
		Memory
	0x4001 3C00 ~ 0x5FFF FFFF	RSV

4.4.1 SRAM

W800 has built-in 288KB SRAM. Among them, 160KB is mounted on the primary AHB bus, and 128KB is mounted on the secondary AHB bus. CPU

Devices on the primary bus can access all memory areas, but devices on the secondary bus can only access 128KB of memory on the secondary bus.

4.4.2 Flash

4.4.2.1 QFlash

W800 integrates 2MBytes QFlash inside. Through the integrated 32KB cache inside the chip, the XIP method is used to execute the program on QFlash

sequence. During the running of the program, the CPU first reads instructions from the Cache, and when the instruction cannot be obtained, it reads the instructions in 8Bytes per line

QFlash reads instructions and stores them in Cache. Therefore, when the continuous running code size is less than 32K, the CPU will not need to read from QFlash

Instructions are fetched, and the CPU can run at a higher frequency at this time. The above method is the operation method of reading instructions, and the RO segment of the entire Image will be

Operate in this way. This process requires no user intervention.

QFlash can also store data. When the user program needs to read and write data in QFlash, it needs to be done through the built-in QFlash controller.

Operation, QFlash provides corresponding address, instruction and other registers to help realize the operation that the user wants. For details, please refer to QFlash

The controller corresponds to the chapter

Users need to pay attention to that when the program reads or writes data, it does not need to perform status judgment, wait and other operations, because the QFlash control

The device itself will make a judgment. When the QFlash controller returns, it indicates that the read or write has been completed.

4.4.2.2 SPI Flash

In addition to supporting 6PIN QFlash interface (built-in PIN, not packaged), W800 chip also supports low-speed SPI interface access. The SPI

The maximum operating frequency of the interface can reach 20MHz, and supports master-slave functions. For detailed description, refer to the corresponding chapter of the SPI interface.

4.4.3 PSRAM

W800 has a PSRAM controller with a built-in SPI/QSPI interface, supports external PSRAM device access with a maximum capacity of 64Mb, and provides a bus

Mode PSRAM read and write erase operations. The highest read and write speed is 80MHz. When the storage capacity needs to be expanded, the off-chip PSRAM can be used to expand

Fill code storage space or data storage space. PSRAM also supports program execution in XIP mode, and CPU Cache also supports caching

Data in PSRAM.

4.5 Start configuration

After the W800 chip is powered on, the CPU will start to execute the firmware in the ROM, and load the user Image at the specified address in the Flash.

The ROM firmware will read the BootMode (PA0) pin when it starts running, and judge to enter the boot state according to the signal of the pin:

Table 6 Start configuration

BootMode	start condition	boot mode	
high		normal boot process	
Ì	Last <30ms, the quick test mode is invalid	normal boot process	
Low			
	Continuous>=30ms	Enter function mode	
Note:			
Test mode: chip test function, which cannot be operated by the user.			
Function mode: enter the basic functions realized by ROM, such as downloading firmware, programming MAC address, etc. For details, refer to			

"WM_W800_ROM Function Brief.pdf"

Typically, the BootMode pin should be used in production or debug phase. During the production phase, the user continuously pulls the BootMode pin

When it is low for more than 30ms, it enters the function mode and can quickly burn the Flash.

In the scenario of product rework or repair, if the chip does not enter the "highest security level" (for the description of the security level, please refer to

"WM_W800_ROM Function Brief"), you can enter the function mode through this pin, erase the old Image, write a new

Imageÿ

In the debugging stage, regardless of any faults in the firmware, you can enter the serial port by pulling the BootMode pin low for more than 30ms

Download function, burn new firmware.

5 Clock and reset module

5.1 Function overview

The clock and reset module completes the software control of the chip clock and reset system. Clock control includes clock frequency conversion, clock shutdown and adaptive

Should be gated; reset control includes soft reset control of the system and sub-modules.

5.2 Main features

ÿ Support clock shutdown of each module

ÿ Support partial module clock adaptive shutdown

ÿ Support software reset of each module

ÿ Support CPU frequency setting

ÿ Support ADC/DAC loopback test

ÿ Support I2S clock setting

5.3 Functional description

5.3.1 Clock gating

By configuring the clock gating enable register CLK_GATE_EN, you can control the clock shutdown of the specified function, so as to turn off a certain module function.

able purpose.

In order to provide the flexibility of the firmware to control the power consumption of the system, the clock and reset module provides the clock gating function of each module in the system. when off

When the clock of the corresponding module is disabled, the digital logic and clock tree of the module will stop working, which can reduce the dynamic power consumption of the system.

The specific switch of each module corresponds to the detailed description of the register SW_CLKG_EN.

5.3.2 Clock adaptive shutdown

According to the transition of some internal states, the chip adaptively turns off the clocks of some functional modules.

Please do not change the configuration, otherwise it may cause system abnormality when PMU function is configured.

5.3.3 Function reset

The chip provides the soft reset function of each subsystem, and the subsystem reset can be achieved by setting the corresponding BIT of SW_RST_CTRL to 0.

However, the reset status will not be cleared automatically, and the corresponding BIT bit of SW_RST_CTRL must be set to 1 to resume normal operation.

The soft reset function will not reset the CPU and WatchDog.

In this register, the reset operation of APB/BUS1/BUS2 (corresponding to APB bus, system bus and data bus) is not recommended, which will cause system

The system access device is abnormal

5.3.4 Clock frequency division

The W800 system uses 40MHz/24MHz crystal as the system clock source, the system has a built-in DPLL, and fixedly outputs 480MHz clock as

The clock source of the whole system (as shown in the figure below).

Figure 4 System clock frequency division relationship

The clock of the system bus is consistent with the CPU clock, and the clock of the data bus is fixed at 1/4 of the WLAN root clock.

The WLAN root clock is also the clock source of the entire WLAN system.

This module provides the function of setting CPU clock and WLAN root clock for firmware to adjust system performance and power consumption.

Setting the BIT[7:0] of the SYS_CLK_DIV register can adjust the CPU clock frequency division factor. The source clock of CPU clock frequency division is DPLL

output, fixed at 480MHz. The default value of the CPU clock division factor is 6, that is, the CPU default operating frequency is divided by 6 of 480MHz.

That is 80MHz. This parameter can be reconfigured when the required clock of the CPU needs to be adjusted.

The CLK_PERI clock provides the root clock of the operating clock of the encryption module in the SoC system, and the root clock of the operating clock of some interfaces, such as

Such as PWM interface, I2S interface, Flash interface clock. This clock is also divided by the 480MHz output from the DPLL. normal working condition

The lower frequency should be fixed at 3, and the root clock of CLK_PERI is 160MHz. It is obtained by dividing the frequency by 2 and dividing by 4 from the root clock of CLK_PERI

80MHz and 40MHz are provided for encryption module and interface module.

Setting BIT[15:8] of SYS_CLK_DIV register can adjust WLAN clock frequency division factor. The default frequency division factor is 3, that is, for DPLL

The 480MHz output frequency is divided by 3 to obtain a 160MHz clock, which is sent to the WLAN as the root node clock (the WLAN continues to divide the frequency to obtain a more

It is a detailed low frequency clock for use by WLAN systems.

Note: If you want the WLAN system to work normally, the WLAN root clock needs to be kept at 160MHz, otherwise the WLAN system will fail.

When the WLAN system is not required to work, the WLAN root clock can be lowered to reduce the dynamic power consumption of the system.

When changing the system clock configuration, you need to pay attention: the ratio of the system bus to the data bus needs to be maintained at M: 1, where M is an integer,

Minimum is 1. When changing the system clock configuration, it is also necessary to update the BIT [23:16] of the register SYS_CLK_DIV at the same time, and set the correct ratio

example coefficient. Otherwise, accessing the data bus will result in abnormal data.

[15:8] of SYS_CLK_SEL provides the frequency division factor for setting the working frequency of SAR_ADC, with 40M as the clock source for frequency division. Crossover system

The number is the assigned frequency division value.

BIT[4] of SYS_CLK_SEL is used to configure the clock frequency selection of the core operation of the RSA module, which can be 80MHz or 160MHz.

BIT[5] is to configure the clock frequency selection of the core operation of the GPSEC module, which can be 80MHz or 160MHz.

BIT[6] is to configure the clock frequency selection of the external bus of the FLASH module, which can be 40MHz or 80MHz.

When you need to reconfigure cpu_clk_divider, wlan_clk_divider, bus2_syncdn_factor, sdadc_fdiv, you need to set

Bit BIT[31] of SYS_CLK_DIV, the hardware automatically updates the above four parameters to the frequency divider, and then clears BIT[31].

I2S_CLK_CTRL provides the clock configuration function of the I2S module.

5.3.5 Debug function control

Users can enable and disable JTAG function by setting the value of DEBUG_CTRL (SYS_CLK_SEL-BIT[16]).

5.4 Register Description

5.4.1 Register list

Table 7 Clock reset	module register list
---------------------	----------------------

offset address	name	abbreviation	access	describe	reset value
0X0000 Software o	slock gating enable register SW_CLKG_E	N	RW software	configuration module whether to turn off the clock	0X0000_7FFF
0X0004 Software (lock mask register SW_CLK_MASK RW			Whether the software configures whether the module is adaptively shut down	0X0000_007E
0X0008 Reserved					
0X000C Software	reset control register SW_RST_CTRL		RW softwa	re configuration reset module	0X01FF_FFFF
0X0010 Clock freque	ency division configuration register	SYS_CLK_DIV	RW config	uration clock divider ratio	0X0000_2212
0X0014 Debug Co	ntrol Register	DEBUG_CTRL	RW config	ure ADC/DAC loopback test	0X0000_0000
0X0018	I2S Clock Control Register	I2S_CLK_CTRL	RW config	ure I2S clock	0X0000_0000
0X001C reset stat	us register	RESET_STATUS RW		View CPU soft reset and Watchdog Reset state	0x0000_0000

5.4.2 Software Clock Gating Enable Register

Table 8 Software Clock Gating Enable Register

bit acces	S	Instructions	reset value
[31:22] RO		reserve	
[21]	RW	soft_touch_gate_en	1'b1
		Configure the clock gating of the touch_sensor module, the default touch_sensor module gating is enabled	
		0: touch_sensor module clock is off	

		1: touch_sensor clock is on	
[20]	RW	soft_bt_gate_en	1'b1
		Configure the gating control of the BT./BLE module clock, the default BT/BLE module gating is enabled	
		0: BT/BLE module clock is off	
		1: BT/BLE clock is on	
[19]	RW	soft_qsram_gate_en	1'b1
		Configure the gating control of the qspi_ram module clock, the default qspi_ram module gating is enabled	,
		0: qspi_ram module clock is off	
		1: qspi_ram clock is on	
[18]	RW	soft_sdio_m_gate_en	1'b1
		Configure the gate control of the sdio_master module clock, the default sdio_master module gate control is enabled	
		0: sdio_master module clock is off	
		1: sdio_master clock is on	
[17]	RW	soft_gpsec_gate_en	1'b1
		Configure the gating control of the gpsec module clock, and the gating control of the gpsec module is enabled by default	
		0: gpsec module clock off	
	$\langle \rangle$	1: gpsec clock on	
[16]	RW	soft_rsa_gate_en	1'b1
		Configure the gating of the RSA clock, the default RSA gating is enabled	
		0: RSA module clock is off	
		1: RSA clock is on	
[15]	RW	soft_i2s_gate_en	1'b1

		Configure the gating of the i2s clock, the default i2s gating is enabled	
		0: i2s clock off	
		1: i2s clock is on	
		soft_lcd_gate_en	1'b1
	5	Configure the gating of the lcd clock, the default lcd gating is enabled	
[14]	RW	0: lcd clock off	
		1: LCD clock is on	
		Soft_pwm_gate_en	1'b1
[13]	RW	Configure the gating of the pwm clock, the default pwm gating is enabled	
[10]		0: pwm clock off	
		1: pwm clock on	
		soft_sd_adc_gate_en	1'b1
[10]	RW	Configure the gating of sd_adc_ clock, the default sd_adc_ gating is enabled	
[12]		0: sd_adc_clock off	
		1: sd_adc_clock on	
		soft_gpio_gate_en	1'b1
		Configure the gating of the GPIO clock, the default GPIO gating is enabled	
[11]	RW	0: GPIO clock off	
		1: GPIO clock is on	
		soft_timer_gate_en	1'b1
[10]	RW	Configure the gating of the timer clock, the default timer gating is enabled	
		0: timer clock off	

		1: timer clock is on	
		soft_rf_cfg_gate_en: internal use, do not modify	1'b1
	DW/	Configure the gating of the rf_cfg clock, the default rf_cfg gating is enabled	
[9]	KW.	1'b0: rf_cfg clock off	
		1'b1: rf_cfg clock on	
		soft_dma_gate_en	1'b1
[0]	RW	Indicates whether the clock supplied to the dma clock domain is turned off	
[O]		1'b0: dma clock off	
		1'b1: dma clock on	
		soft_ls_spi_gate_en	1'b1
[7]	RW	Configure the gate control of the low-speed spi clock, the default low-speed spi gate is enabled	
		1'b0: low speed spi clock off	
		1'b1: low-speed spi clock on	
	RW	soft_uart5_gate_en	1'b1
[6]		Configure the gate control of uart5, the default uart5 is open	
		0: uart5 off	
1	$\langle h \rangle$	1: uart5 open	
[5]	RW	soft_uart4_gate_en	1'b1
		Configure the gate control of uart4, uart4 is enabled by default	
		0: uart4 off	
		1: uart4 open	
[4]	RW	soft_uart3_gate_en	1'b1

		Configure the gate control of uart3, uart3 is enabled by default	
		0: uart3 off	
		1: uart3 open	
[3]	RW	soft_uart2_gate_en	1'b1
		Configure the gate control of uart2, uart2 is enabled by default	
		0: uart2 off	\bigcirc
		1: uart2 open	
		soft_uart1_gate_en	1'b1
	RW	Configure the gating of uart1 clock, the default uart1 gating is on	
[2]		1'b0: uart1 clock off	
		1'b1: uart1 clock on	
		soft_uart0_gate_en	1'b1
	RW	Configure the gate control of uart0 clock, the default uart0 gate control is enabled	
[1]		1'b0: uart0 clock off	
		1'b1: uart0 clock on	
		soft_i2c_gate_en	1'b1
		Configure the gating of the i2c clock, the default i2c gating is enabled	
[0]	RW	1'b0: i2c clock off	
		1'b1: i2c clock on	

5.4.3 Software Clock Mask Register

Table 9 Software Clock Mask Register

bit acc	ess	Instructions	reset value
		soft_cpu_clk_gt_mask	1'b1
		Indicates whether the clock supplied to the CPU clock domain (including CPU, bus1, ROM, SRAM) can be adaptive	
[6]	RW	Shutdown (when the CPU needs to enter the WFI state, do not set adaptive shutdown)	
		1'b0: Allow adaptive shutdown and turn-on	
		1'b1: Adaptive power off and on not allowed	
[5 : 2] RW		reserved for internal use, do not modify	
	RW	soft_sdioahb_clk_gt_mask	1'b1
		Indicates whether the clock supplied to the sdio ahb clock domain can be adaptively shut down	
[1]		1'b0: Allow adaptive shutdown and turn-on	
		1'b1: Adaptive power off and on not allowed	
[0]	RW	soft_pmu_clk_gt_mask	1'b0
		After the clock output by pll, there is a gating unit, which is configured by this register, indicating whether it is allowed to be shut down by the PMU.	
		1'b0: Allows the PMU to turn off the gating unit, thereby turning off the clock	
		1'b1: The PMU is not allowed to shut down the gate unit	

5.4.4 Software reset control register

Table 10 Software reset control register

bit acc	ess	Instructions	reset value
	RW	soft_touch_rst_n	1'b1
[31]		Software reset touch_sensor module	
		0: reset	

		1: Reset release	
[30]	RW	soft_rst_flash_n	1'b1
		Software Reset Flash Controller Module	
		0: reset	
		1: Reset release	
[29]	RW	soft_rst_bt_n	1'b1
		Software reset BT module	,
		0: reset	
		1: Reset release	
[28]	RW	soft_rst_qspi_ram_n	1'b1
		Software reset qspi_ram module	
		0: reset	
		1: Reset release	
		soft_rst_sdio_m_n	1'b1
[27]	RW	Software reset sdio_master module	
[2.1]		0: reset	
		1: Reset release	
	1	soft_rst_gpsec_n	1'b1
	BW(software reset gpsec module	
[26]	1.1.1	1'b0: Reset	
		1'b1: Reset release	
[25]	RW	soft_rst_rsa_n	1'b1

		Software reset RSA module	
		1'b0: reset	
		1'b1: Reset release	
		soft_rst_i2s_n	1'b1
[24]	RW	Software reset i2s module	
[24]		1'b0: reset	
		1'b1: Reset release	,
		soft_rst_lcd_n	1'b1
[23]	RW	software reset lcd module	
[20]		1'b0: reset	
		1'b1: Reset release	
	RW	soft_rst_pwm_n	1'b1
[22]		Software reset pwm module	
		1'b0: reset	
		1'b1: Reset release	
	RW	soft_rst_sar_adc_n	1'b1
[21]		Software reset sar_adc module	
		1'b0: reset	
		1'b1: Reset release	
		soft_rst_timer_n	1'b1
[20]	RW	Software reset timer module	
		1'b0: Reset	

Machine Translated by Google

		1'b1: Reset release	
		soft_rst_gpio_n	1'b1
	DW/	software reset gpio module	
[19]	KW	1'b0: reset	
		1'b1: Reset release	
		soft_rst_rf_cfg_n	1'b1
	PW/	Software reset configures the register module of RF (internal use, do not modify)	,
[18]		1'b0: Reset	<i>c</i>
		1'b1: Reset release	
		soft_rst_spis_n	1'b1
[17]	RW	software reset high speed spi module	
[,,]		1'b0: reset	
		1'b1: Reset release	
		soft_rst_spim_n	1'b1
[16]	RW	Software reset low speed spi module	
[.0]		1'b0: reset	
	$\langle \rangle$	1'b1: Reset release	
[15]	RW	soft_rst_uart5_n	1'b1
		Software reset on-chip uart5 module	
		1'b0: Reset	
		1'b1: Reset release	
[14]	RW	soft_rst_uart4_n	1'b1

		Software reset on-chip uart4 module	
		1'b0: reset	
		1'b1: Reset release	
[13]	RW	soft_rst_uart3_n	1'b1
		Software reset on-chip uart3 module	
		1'b0: reset	
		1'b1: Reset release	
[12]	RW	soft_rst_uart2_n	1'b1
		Software reset on-chip uart2 module	
		1'b0: reset	
		1'b1: Reset release	
		soft_rst_uart1_n	1'b1
[11]	RW	Software reset on-chip uart1 module	
[]		1'b0: reset	
		1'b1: Reset release	
	~	soft_rst_uart0_n	1'b1
	PW/	Software reset on-chip uart0 module	
[10]		1'b0: reset	
		1'b1: Reset release	
		soft_rst_i2c_n	1'b1
[9]	RW	Software reset on-chip i2c module	
		1'b0: reset	

		1'b1: Reset release	
		soft_rst_bus2_n	1'b1
		Software reset on-chip bus2 module	
[8]	RW	1'b0: reset	
		1'b1: Reset release	
		soft_rst_bus1_n	1'b1
_	RW	Software reset on-chip bus1 module	,
[7]		1'b0: reset	
		1'b1: Reset release	
	RW	soft_rst_apb_n	1'b1
[6]		Software reset abp bridge module	
[0]		1'b0: reset	
		1'b1: Reset release	
	RW	soft_rst_mem_mng_n	1'b1
[5]		Software reset mem_mng module (internal use, please do not modify)	
		1'b0: reset	
1	$\langle \rangle$	1'b1: Reset release	
[4]		soft_rst_dma_n	1'b1
	RW	software reset dma module	
		1'b0: reset	
		1'b1: Reset release	
[3]	RW	soft_rst_sdio_ahb_n	1'b1

		Software reset sdio ahb clock domain module	
		1'b0: reset	
		1'b1: Reset release	
[2]	RW	soft_rst_sec_n	1'b1
		Software reset security module (internal use, do not modify)	
		1'b0: reset	\bigcirc
		1'b1: Reset release	
[1]	RW	soft_rst_mac_n	1'b1
		Software reset mac module (internal use, please do not modify)	
		1'b0: reset	
		1'b1: Reset release	
[0]	RW	soft_rst_bbp_n	1'b1
		Software reset bbp module (internal use, please do not modify)	
		1'b0: reset	
		1'b1: Reset release	

5.4.5 Clock Divider Configuration Register

Table 11 Clock frequency division configuration register

bit acce	ss	Instructions	reset value
		divide_freq_en	1'b0
[31]	RW	When it is necessary to reconfigure cpu_clk_divider, wlan_clk_divider, bus2_syncdn_factor,	
		When sdadc_fdiv, set this register, the hardware will automatically update the above four parameters to the frequency divider, and then clear this register	

	register.	
	1'b0: frequency division factor is in effect	
	1'b1: Require hardware to update frequency division parameters	
	Note: When configuring the frequency division factor here, when Divide_freq_en is valid, all factors must already be valid	
[30:28]	reserve	
	Peripheral_divider	4'h3
	160M clock frequency division factor:	
[27:24] RW	Use DPLL as the clock source for frequency division. The frequency division coefficient is the assigned frequency division value. The divider output should be 160MHz.	
	DPLL output is 480MHz and should be configured as 3.	
	bus2_syncdn_factor	8'h2
[00: 40] DW	The clock ratio relationship between bus1 and bus2 should be N:1	
[23: 16] KW	Among them, N is an integer. In the actual adjustment, it mainly depends on the ratio of the operating frequency of the CPU to the clock frequency of bus2.	
	Since the default cpu uses 80MHz clock and bus2 uses 40MHz clock, then N=2	
	wlan_clk_divider	8'h3
	The clock from the PLL is divided and sent to the wlan system. This register is the frequency division factor, the factor>=2.	
[15 : 8] RW	The default frequency division factor is 3, that is, the 480MHz output of pll is divided by 3, and the 160MHz clock is obtained as the root	
	The node clock is sent to wlan (wlan continues to divide the frequency to obtain a more detailed low-frequency clock);	
	Note 1: If the WLAN system needs to work normally, this clock needs to be fixed at 160MHz; if the WLAN system is turned off,	
	Then this clock can be reduced in frequency to save power consumption. This clock must not be configured higher than 160MHz.	
	Note 2: The secondary bus clock and APB clock are divided by four;	

	cpu_clk_divider	8'h6
	The clock from the PLL is divided and sent to the CPU. This register is the frequency division factor, the factor>=2.	
[7 : 0] RW	The default frequency division factor is 6, that is, after the reset is released, the 480MHz clock output by the PLL is divided by 6 and sent to the CPU	
	is the 80MHz clock. When you need to adjust the clock required by the CPU, you can reconfigure this parameter	

5.4.6 Debug Control Register

5.4	l.6 Debug Co	ontrol Register	
		Table 12 Clock Selection Register	
bit acce	SS	Instructions	reset value
		JTAG enable	1'b0
[16]	RW	1'b0: disable JTAG debug function	
		1'b1: Enable JTAG debug function	
		sd_adc_div	8'd10
		sigma-delta ADC clock division factor:	
[15ÿ8] RW		Use 40MHz as the clock source for frequency division. The frequency division coefficient is the assigned frequency division value.	
		After configuring this register, you must configure Divide_freq_en in the register clk_divider to take effect;	
	\sim		
	N	RSV	1'b0
[7]	RW		
		qflash_clk_sel	1'b0
[6]	RW	QSPI_FLASH clock selection	
		1: use 80MHz;	

Table 12 Clock Selection Register

		0: use 40MHz;	
		gpsec_sel	1'b0
(5)	RW	GPSEC clock selection	
[5]		1: use 160MHz;	
		0: use 80MHz;	
		rsa_sel	1'b0
141	RW	RSA clock selection	
[4]		1: use 160MHz;	7
		0: use 80MHz;	
[3:0] RW		Reserve, do not modify	4'd0

5.4.7 I2S Clock Control Register

bit access		Instructions	reset value
[31:18]		reserve	
[17: 8] RW	J.	BCLKDIV BCLK divider: F_BCLK = F_I2SCLK / BCLKDIV Note: If EXTAL_EN is not selected and internal PLL is used then F_I2SCLK = F_CPU (corresponds to CPU frequency same).	10'b0
		Assuming F_CPU = 160MHz, F_I2SCLK = external crystal oscillator frequency when WXTAL_EN is enabled, BCLKDIV = round (F_I2SCLK/(Fs*W*F))	
		Where Fs is the sampling frequency of the audio data, W is the word width;	

Table 13 I2S clock control register

		F = 1 when the data is mono;	
		F = 2 when the data is stereo.	
		For example, if the internal PLL is used and the data width is 24 bits, the format is stereo and the sampling frequency is	
		128KHz, BCLKDIV should be configured as (160 * 10e6 / 128 10e3 * 2ÿ= 10'h1aÿ 24	
		MCLKDIV	6'b0
		If an external clock is selected, this MCLK divider is used to generate the appropriate MCLK frequency.	
[7 · 2] RW		F_mclk = F_I2SCLK / (2 * MCLKDIV)ÿ	
[, . 2]		When MCLKDIV = 0, F_I2SCLK is an external clock;	
		When MCLKDIV >= 1, F_mclk = F_I2SCLK;	
		Note: F_mclk should be configured as 256 * fs, where fs is the sampling frequency.	
		MCLKEN	1'b0
[4]	RW	MCLK enable switch	
[1]		1'b0: Disable MCLK	
		1'b1: enable MCLK	
		EXTAL_EN	1'b0
		External clock selection, choose to use internal I2S block clock or external clock	
	A		
	$\langle \rangle$	1'b0: internal clock	
[0]	RW	1'b1: external clock	
		Note: When using an external clock, the external clock must be 2 N 256 fs, where fs is the sampling frequency, N must	
		Must be an integer.	

18 18

5.4.8 Reset Status Register

bit acce	SS	Instructions	reset value
[31:18]		reserve	
	WHERE	CPU soft reset status clear	1'b0
[17: 8]		Write 1 to clear CPU soft reset status.	
		Wdog soft reset status clear	1'b0
[7 : 2] WO		Write 1 to clear Wdog Reset Status.	
		CPU Soft Reset Status	1'b0
[1]	RO	1: The CPU generates a soft reset;	
		0: The CPU does not generate a soft reset;	
		Wdog reset state	1'b0
[0]	RO	1: Wdog generated Reset;	
		0: Wdpg does not generate a Reset	

Table 14 Reset Status Register

6 DMA modules

6.1 Function overview

DMA is used to provide high-speed data transfers between peripherals and memory, and between memory and memory. Can operate without any CPU

Move data quickly through DMA without any problem. The CPU resource saved in this way does not affect the operation of other instructions by the CPU.

The DMA is mounted on the AHB bus, supports up to 8 channels, 16 hardware peripheral request sources, and supports linked list structure and register control

6.2 Main features

ÿ Amba2.0 standard bus interface, 8 DMA channels

ÿ Support DMA operation based on memory linked list structure

ÿ Support 16 hardware peripheral request sources

ÿ Support 1, 4-burst operation mode

ÿ Support byte, half-word, word as unit transfer operation

ÿ Supports source and destination addresses unchanged or sequentially incremented or configurable to operate in a predefined address range

ÿ Support memory-to-memory, memory-to-peripheral, and peripheral-to-memory data transfer methods

6.3 Functional description

6.3.1 DMA channels

W800 supports a total of 8 DMA channels, DMA channels do not interfere with each other and can run simultaneously. Requesting different data streams can choose different

DMA channel.

Each DMA channel is allocated in a different register address offset segment, you can directly select the address segment of the corresponding channel for configuration and use. Do not

The register configuration method of the same channel is exactly the same.

DMA base address	0x4000 0800	
DMA_CH0	Offset (0x10~0x38)	
DMA_CH1	Offset (0x40~0x68)	
DMA_CH2	Offset (0x70~0x98)	
DMA_CH7	Offset (0x160~0x188)	Y

Table 15 DMA address allocation

6.3.2 DMA data flow

Eight DMA channels enable a unidirectional data transfer link between source and destination.

The source and destination addresses of DMA can be set to constant, increment or cycle after each DMA operation:

ÿ DMA_CTRL[2:1] controls how the source address changes after each DMA operation;

 $\ddot{\text{y}}$ DMA_CTRL[4:3] controls how the destination address changes after each DMA operation.

DMA can set the handling unit of byte, half-word, and word, and the final quantity of data to be transported is an integer multiple of the handling unit.

DMA_CTRL[6:5] to set.

DMA can set how many units of data are transported each time through burst, and select 1 or 4 units to be transported at a time through DMA_CTRL[7].

1-bit data, if DMA_CTRL[6:5] is set to word and burst is set to 4, then 4 words of data will be moved each time.

DMA can set the number of Bytes each time DMA transfer is started, the maximum is 65535 Bytes, set by DMA_CTRL[23:8].

6.3.3 DMA Cycling Mode

DMA cycle address mode means that after setting the source and destination addresses of DMA, after the data transfer reaches the set cycle boundary, it will jump to

Loop start address, and execute in this way until the set transmission byte is reached.

The source and destination addresses of the loop address mode need to be set with the SRC_WRAP_ADDR and DEST_WRAP_ADDR registers, and passed

WRAP_SIZE to set the length of the loop.

6.3.4 DMA transfer mode

DMA supports 3 transfer modes:

ÿ memory to memory

Both the source address and the destination address are configured as the memory address to be transferred, and DMA_MODE[0] is set to 0 in software mode.

ÿ memory to peripherals

The source address is set to the memory address, the destination address is set to the peripheral address, DMA_MODE[0] is set to 1, hardware mode,

DMA_MODE[5:2] selects the peripheral used.

ÿ Peripherals to memory

The source address is set to the peripheral address, the destination address is set to the memory address, DMA_MODE[0] is set to 1, hardware mode,

DMA_MODE[5:2] selects the peripheral used.

6.3.5 DMA Peripheral Selection

When using the transfer method from peripherals to memory or memory to peripherals, except that the corresponding peripherals need to be set to DMA TX or RX,

DMA_MODE[5:2] also needs to select the corresponding peripheral.

Note: Because there are 3 UART ports, when UART uses DMA, it is also necessary to select the corresponding port through UART_CH[1:0].

UARTÿ

6.3.6 DMA linked list mode

DMA supports linked list mode of operation. Through the linked list mode, when we DMA transfers the memory data of the current linked list, we can advance to the next

After the DMA finishes moving the current linked list, it judges that the next linked list is valid, and can directly move the data of the next linked list.

The efficiency of cooperation between DMA and CPU can be effectively improved by means of linked list.

Linked list operation mode: set the DMA to work in the linked list mode through the DMA_MODE[1] register, and then set the DESC_ADDR register to

It is the starting address of the linked list structure, and then enable DMA through the CHNL_CTRL register. When the DMA process completes the move of the current memory

Finally, the software notifies the DMA that there is still valid data in the linked list by setting the valid flag, and the DMA processes the data according to the valid flag of the linked list.

A data to be moved.

6.3.7 DMA Interrupts

DMA transfer completion or burst can generate an interrupt, and the INT_MASK register can mask the corresponding interrupt of the DMA channel.

When the DMA corresponding interrupt is generated, the status of the current interrupt can be queried through the INT_SRC register, indicating what is currently generating the interrupt.

The corresponding status bit needs software to write 1 to clear 0.

6.4 Register Description

6.4.1 Register list

Table 16 DMA register list

offset address	name	abbreviation	access	describe	reset value
0X0000 interrup	t mask register	INT_MASK	RW Set tl	he DMA interrupt that needs to be masked	0X0000_FFFF
0X0004 interrup	t status register	INT_SRC	RW indica	ates current DMA interrupt status 0X0000	_0000
0X0008	DMA channel selection register DMA_C	;H	Which UA	RT to choose when RW UART periphera	I 0X0000_0000

0X000C Reserved	1					
DMA CHNL0 registers						
0X0010	DMA Source Address Register	SRC_ADDR	Source ad	dress for RW DMA transfers	0X0000_0000	
0X0014	DMA Destination Address Register	DEST_ADDR	Destinatio	n address for RW DMA transfer	0X0000_0000	
0X0018	DMA cycle source start address register S	RC_WRAP_ADDR RW DMA t	ransfer sour	ce address in cycle mode 0X0000_0000		
0X001C	DMA cycle destination start address register	DEST_WRAP_ADD	DMA Tran	sfer Destination in RW Cycle Mode	0X0000_0000	
	device	R		site		
0X0020	DMA Cycle Length Register	WRAP_SIZE	DMA cycle	boundary in RW cycle mode 0X0000_0000		
0X0024	DMA Channel Control Register	CHNL_CTRL	RW Curre	nt channel DMA start and stop 0X0000_0000		
0X0028	DMA Mode Select Register	DMA_MODE	RW sets h	ow DMA works	0X0000_0000	
0X002C	DMA Flow Control Register	DMA_CTRL	RW Set D	MA transfer data flow	0X0000_0000	
0X0030	DMA Transfer Bytes Register	DMA_STATUS	RO Get th	e number of bytes currently transferred 0X00	00_0000	
0X0034	DMA linked list entry address register DES	C_ADDR	RW DMA	inked list address entry address setting 0X00	000_0000	
0X0038	DMA current destination address register C	CUR_DEST_ADDR RO Addre	ss of current	DMA operation	0X0000_0000	
DMA CHNL1 regi	sters	7				
0X0040 -						
0X0068	Same DMA CHNLU registers					
DMA CHNL2 regi	sters					
0X0070 -						
0X0098	Same DMA CHNL0 registers 3					
DMA CHNL3 regi	sters					
0X00A0 - same DMA CHNL0 registers						

0X00C8		
DMA CHNL4 reg	pisters	
0X00D0 -		
0X00F8	Same DMA CHNL0 registers	
DMA CHNL5 reg	jisters	
0X0100 -		
0X0128	Same DMA CHNL0 registers	
DMA CHNL6 reg	jisters	
0X0130 -		
0X0158	Same DMA CHNL0 registers	
DMA CHNL7 reg	jisters	
0X0160 -		
0X0188	Same DMA CHNL0 registers	C Y

6.4.2 Interrupt mask register

Table 17 DMA interrupt mask register

bit acc	ess	Instructions	reset value
[31:16]		reserve	
[15]	RW	channel7 transfer_done interrupt mask, active high.	1'b1
[14]	RW	channel7 burst_done interrupt mask, active high.	1'b1
[13]	RW	channel6 transfer_done interrupt mask, active high.	1'b1
[12]	RW	channel6 burst_done interrupt mask, active high.	1'b1

[11]	RW	channel5 transfer_done interrupt mask, active high.	1'b1
[10]	RW	channel5 burst_done interrupt mask, active high.	1'b1
[9]	RW	channel4 transfer_done interrupt mask, active high.	1'b1
[8]	RW	channel4 burst_done interrupt mask, active high.	1'b1
[7]	RW	channel3 transfer_done interrupt mask, active high.	1'b1
[6]	RW	channel3 burst_done interrupt mask, active high.	1'b1
[5]	RW	channel2 transfer_done interrupt mask, active high.	1'b1
[4]	RW	channel2 burst_done interrupt mask, active high.	1'b1
[3]	RW	channel1 transfer_done interrupt mask, active high.	1'b1
[2]	RW	channel1 burst_done interrupt mask, active high.	1'b1
[1]	RW	channel0 transfer_done interrupt mask, active high.	1'b1
[0]	RW	channel0 burst_done interrupt mask, active high.	1'b1

6.4.3 Interrupt Status Register

Table 18 DMA interrupt status register

bit acce	ss	Instructions	reset value
[31:16]	$\langle \rangle$	reserve	
[15]	RW	channel7 transfer_done interrupt status, write 1 to clear 0. An interrupt is generated when the DMA transfer is complete.	1'b0
[14]	RW	channel7 burst_done interrupt status, write 1 to clear 0. DMA burst completion generates an interrupt.	1'b0
[13]	RW	channel6 transfer_done interrupt status, write 1 to clear 0. An interrupt is generated when the DMA transfer is complete.	1'b0
[12]	RW	channel6 burst_done interrupt status, write 1 to clear 0. DMA burst completion generates an interrupt.	1'b0
[11]	RW	channel5 transfer_done interrupt status, write 1 to clear 0. An interrupt is generated when the DMA transfer is complete.	1'b0

Winner Micro 联盛德微电子

[10]	RW	channel5 burst_done interrupt status, write 1 to clear 0. DMA burst completion generates an interrupt.	1'b0
[9]	RW	channel4 transfer_done interrupt status, write 1 to clear 0. An interrupt is generated when the DMA transfer is complete.	1'b0
[8]	RW	channel4 burst_done interrupt status, write 1 to clear 0. DMA burst completion generates an interrupt.	1'b0
[7]	RW	channel3 transfer_done interrupt status, write 1 to clear 0. An interrupt is generated when the DMA transfer is complete.	1'b0
[6]	RW	channel3 burst_done interrupt status, write 1 to clear 0. DMA burst completion generates an interrupt.	1'b0
[5]	RW	channel2 transfer_done interrupt status, write 1 to clear 0. An interrupt is generated when the DMA transfer is complete.	1'b0
[4]	RW	channel2 burst_done interrupt status, write 1 to clear 0. DMA burst completion generates an interrupt.	1'b0
[3]	RW	channel1 transfer_done interrupt status, write 1 to clear 0. An interrupt is generated when the DMA transfer is complete.	1'b0
[2]	RW	channel1 burst_done interrupt status, write 1 to clear 0. DMA burst completion generates an interrupt.	1'b0
[1]	RW	channel0 transfer_done interrupt status, write 1 to clear 0. An interrupt is generated when the DMA transfer is complete.	1'b0
[0]	RW	channel0 burst_done interrupt status, write 1 to clear 0. DMA burst completion generates an interrupt.	1'b0

6.4.4 UART select register

Table 19 UART selection register

bit acce	SS	Instructions	reset value
[31: 24]	×.	reserve	
[23:8] RW	$\langle \rangle$	dma req clear:	16'd0
		Writing 1 to each bit clears the corresponding dma req request. Self-cleaning.	
		For example, writing 1 to bit 23 will clear the 15th corresponding dma request in dma_sel;	
		Writing 1 to bit 8 will clear the 0th dma request-uart_rx_req in dma_sel;	
[2 : 0] RW		Uart dma channel selection:	3'h0
		3'd0: uart0 module dma channel access dma	

	3'd1: uart1 module dma channel access dma	
	3'd2: uart2/7816 module dma channel access dma	
	3'd3: uart3 module dma channel access dma	
	3'd4: uart4 module dma channel access dma	
	3'd5: uart5 module dma channel access dma	

6.4.5 DMA source address register

Table 20 DMA source address register

bit acces	SS	Instructions	reset value
[31: 0] RW		In acyclic mode, the source address of DMA transfer, peripheral address or memory address	32'h0

6.4.6 DMA Destination Address Register

Table 21 DMA destination address register

bit acce	ss	Instructions	reset value
[31: 0] RW		In acyclic mode, the destination address of DMA transfer, peripheral address or memory address	32'h0

6.4.7 DMA cycle source start address register

Table 22 DMA cycle source start address register

bit acce	ss	Instructions	reset value
[31: 0] RW		In loop mode, the starting address of the source address of DMA transfer, peripheral address or memory address	32'h0

6.4.8 DMA Cycle Destination Start Address Register

Table 23 DMA cycle destination start address register

bit acce	SS	Instructions	reset value
[31: 0] RW		In loop mode, the starting address of the destination address of DMA transfer, peripheral address or memory address	32'h0

6.4.9 DMA Cycle Length Register

(1
bit access	Instructions	reset value
	In cycle mode, the DMA destination address cycle length.	16'h0
[31:16] RW	DMA increments the transfer data sequentially from the start address, and when the number of transfer data bytes reaches the set value, it will jump	
	Go to the cycle start address, and continue to move data from the start address	
[15: 0] RW	In cycle mode, DMA source address cycle length.	16'h0

Table 24 DMA cycle length register

6.4.10 DMA channel control register

Table 25 DMA channel control register

bit access		Instructions	reset value
[31: 2]	\mathcal{S}	reserve	
[1]	RW	dma_stop	1'b0
		Stop dma operation, active high.	
		DMA will stop after finishing the current burst operation and clear chnl_on at the same time. The software should be based on	
		A chnl_on of 0 ensures that dma has been completely stopped.	
[0]	RW	chnl_on	1'b0

	Start current channel DMA conversion, active high.	
	Automatically cleared to 0 after conversion or setting stops after Dma is completed.	

6.4.11 DMA mode selection register

Table 26 DMA mode selection register

bit acce	SS	Instructions	reset value
[31: 7]		reserve	
		chain_link_en	1'b0
		Valid in linked list mode, indicating whether dma will continue to read and process subsequent links after processing the first linked list	
[6]	RW	suface.	
		If it is 1, update the next_desc_addr in the linked list, and continue to read the next linked list until the linked list	
		Among them, vld is 0; if it is 0, it will stop after processing the current linked list.	
		dma_sel	4'h0
		Selection of 16 dma_reqs.	
		4'd0ÿuart rx dma req	reset value 1'b0 4'h0
		4'd1ÿuart tx dma req	
		4'd2ÿpwm_cap0_req	
[5 : 2] RW		4'd3ÿpwm_cap1_req	
		4'd4ÿLS_SPI rx dma req	
		4'd5ÿLS_SPI tx dma req	
		4'd6ÿSD_ADC chnl0 req	
		4'd7ÿSD_ADC chnl1 req	

		4'd8ÿSD_ADC chnl2 req		
		4'd9ÿSD_ADC chnl3 req		
		4'd10: I2S RX req		
		4'd11: I2S TX req		
		4'd12: SDIO_HOST req		
		chain_mode		1'b0
[1]	RW	1'b0: use normal mode		
		1'b1: use linked list mode	C^{\prime}	
		dma_mode		1'b0
[0]	RW	1'b0: software mode.		
		1'b1: hardware method.		

6.4.12 DMA data flow control register

Table 27 DMA data flow control register

bit access		Instructions	reset value
[31:24]		reserve	
	\sim	total_byte	16'h0
[23: 8] RW	1	The total number of bytes to be operated. It needs to be consistent with the data_size configuration, that is, if it is a word operation, then	
		It should be configured as an integer multiple of 4; if it is half-word operation, it should be configured as an integer multiple of 2.	
		burst_size	1'b0
[7]	RW	Set how many units of data the DMA moves each time	
		1'b0: burst is 1	

		1'b1: burst is 4	
		When the last burst size exceeds the number of remaining transfers, use the burst size as the size of the remaining data	
		Small.	
		data_size	2'h0
		Set up handling units for DMA	
10 EL D.11/		2'h0ÿchange	
[6 : 5] RW		2'h1ÿhalf_word	,
		2'h2ÿword	<i>z</i>
		2'h3: reserved	
		dest_addr_inc	2'h0
		2'h0: The destination address remains unchanged after each operation;	
[4 · 2] DW		2'h1: The destination address is automatically accumulated after each operation.	
[4 . 3] KW		2'h2: Reserved	
		2h3: Loop operation, the destination address is automatically accumulated after each operation, and jumps to the start of the loop when it reaches the defined loop boundary	
		start address,	
		src_addr_inc	2'h0
[2 : 1] RW	\sim	2%). The source address remains unchanged after each operation;	
		2h1: The source address is automatically accumulated after each operation.	
		2'h2: Reserved	
		2h3: Loop operation, the source address is automatically accumulated after each operation, and jumps to the beginning of the loop when it reaches the defined loop boundary	
		address.	
[0]	RW	auto_reload	1'b0

	After the current DMA transfer is completed, the next DMA transfer will be performed automatically according to the current DMA configuration.	

6.4.13 DMA Transfer Bytes Register

Table 28 DMA Transfer Bytes Register

bit acce	ss	Instructions	reset value
[31:16]		reserve	\bigcirc
		transfer_cnt	16'h0
[15: 0] RW		The number of bytes currently transferred.	
		Every time dma is restarted (chnl_on is set to 1), it is cleared to 0 and starts counting again.	

6.4.14 DMA linked list entry address register

Table 29 DMA linked list entry address register

bit access		Instructions	reset value
[31: 0] RW	~	desc_addr When the linked list is enabled, it is used as the entry address of the linked list. After each transmission of a linked list is completed, the base of the next linked list The address is updated to this register.	32'h0

6.4.15 DMA Current Destination Address Register

Table 30 DMA Current Destination Address Register

bit acce	ss	Instructions	reset value
[31: 0] RO		current_dest_addr	32'h0
		Current DMA operation destination address.	

	When the software stops dma, you can know the destination address that dma will operate by checking this register.	

92

7 General hardware encryption module

7.1 Function overview

The encryption module automatically completes the encryption of the source address space data of the specified length, and automatically writes the encrypted data back to the specified destination address space after completion.

between; support SHA1/MD5/RC4/DES/3DES/AES/CRC/TRNG.

7.2 Main features

ÿ Support SHA1/MD5/RC4/DES/3DES/AES/CRC/TRNG encryption algorithm

ÿ DES/3DES supports both ECB and CBC modes

ÿ AES supports three modes: ECB, CBC and CTR

ÿ CRC supports CRC8, CRC16_MODBUS, CRC16_CCITT and CRC32 four modes

ÿ CRC supports input/output reverse

ÿ SHA1/MD5/CRC supports continuous multi-packet encryption

ÿ Built-in true random number generator, also supports seed seed to generate pseudo-random numbers

7.3 Functional description

7.3.1 SHA1 encryption

The hardware SHA1 calculation can be performed on continuous multi-packet data, and the calculation result is stored in the register, and the encrypted result of the previous packet can be used as the next packet

initial value.

7.3.2 MD5 encryption

The hardware MD5 calculation can be performed on continuous multi-packet data, and the calculation result is stored in the register. The encryption result of the previous packet can be used as the initial packet of the next packet.

initial value.

er. The encryption result of the previous package can be used as the initial packet of the next package.

7.3.3 RC4 encryption

Supports RC4 encryption and decryption.

7.3.4 DES encryption

Support DES encryption and decryption, support ECB and CBC two modes.

7.3.5 3DES encryption

Support 3DES encryption and decryption, support ECB and CBC two modes.

7.3.6 AES encryption

Support AES encryption and decryption, support ECB, CBC and CTR three modes.

The hardware CRC calculation can be performed on continuous multi-packet data, and the calcul

7.3.7 CRC encryption

ed in the reais

Initial value, supports CRC8, CRC16_MODBUS, CRC16_CCITT and CRC32 four modes, supports input/output reverse.

The calculation formula of CRC32 is as follows:

1ÿCRC-32: 0x04C11DB7

X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1

Commonly used in ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP-FCS and other protocols.

2. CRC-16: supports two kinds of polynomials

2.1: 0X1021

X16 + X12 + X5 + 1

Commonly used in ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCS CCITT and other protocols.

2.2: 0X8005

X16 + X15 + X2 + 1

Commonly used in USB, ANSI X3.28, SIA DC-07 and other protocols.

3ÿCRC-8ÿ0X207

x8+x2+x1+1

7.3.8 TRNG random number generator

A true random number generator module is integrated in the W800 system. Divided into analog module and digital post-processing module. The analog module outputs a random clock

ad_trng_clks and random number ad_trng_dout, the digital post-processing module is used to eliminate the deviation and autocorrelation of random numbers. related control

Control registers are in the GPSEC register list.

The basic operation process is as follows:

1. Enable TRNG_EN, set TRNG_SEL to 1, make GPSEC register 0x48 display the output value of TRNG. At this time mode

The analog module starts to output random clock and random signal. The signal obtained by the first 8 clock samples is used as the initial state of the LFSR to initialize the LFSR

Chain, the data obtained by each random clock sample is post-processed by XOR CHAIN and LFSR registers, shifted and stored in the register

in TRNG_RANDOM.

2. Software can read random value through GPSEC register 0x48. Digital post-processing when the register TRNG_DIG_BYPASS is set to 1

The module stops working, and directly stores the output value of the analog module into the result register TRNG_RANDOM.

7.4 Register description

7.4.1 Register list

offset address	name	abbreviation	access	describe	reset value
0X0000 source	e address register	SRC_ADDR	RW RC4/	SHA1/AES/DES/3DES/CRC/MD 5 multiplexing source address	0X0000_0000
0X0004 destin	ation address register	DEST_ADDR	RW RC4/	AES/DES/3DES multiplexing destination address 0X(0000_0000
0X0008 config	uration register	GPSEC_CFG	RW general	hardware encryption module configuration register	0X0000_0000
0X000C Contr	ol register	GPSEC_CTRL	RW genera	I hardware encryption module control register	0X0000_0000
0X0010 Secre	t key 0 low register KEY00		RW Key0	lower 32 bits first input key (RC4/AES/DES/3DES), multiplexing CRC	0X0000_0000
0X0014 Key 0	high register KEY01	S	RW Key0	high 32-bit first input key ÿRC4/AES/DES/3DESÿ	0X0000_0000
0X0018 Secre	t key 1 low register KEY10		RW Key1	lower 32-bit second input key ÿRC4/AES//3DESÿ	0X0000_0000
0X001C Key 1	high register KEY11		RW Key1	high 32-bit second input key ÿRC4/AES//3DESÿ	0X0000_0000
0X0020 Secre	t key 2 low register	KEY20	RW Key2	The third input key of the lower 32 bits (3DES), multiplexing iv1 lower 32-bit input initial Vector (AES)	0X0000_0000

Table 31 Encryption module register list

		KEY21	RW Key2	High 32-bit third input key	0X0000_0000
0X0024 Secret	key 2 high register			(3DES), multiplexing iv1 high 32-bit input initial	
				Vector (AES)	
27/2222	Initial vector 0 low register	IV00	RW IV0 L	ow 32-bit input initial vector	0X0000_0000
0X0028	device			ÿAES/DES/3DESÿ	
020030	Initial vector 0 high register	IV01	RW IV0 h	igh 32-bit input initialization vector	0X0000_0000
00020	device			ÿAES/DES/3DESÿ	
0X0030 status	register	GPSEC_STS	RW genera	I hardware encryption module status register	0X0000_0000
0X0034 Digest	0 Register	SHA1-DIGEST0	RW sha1	digest0/MD5-digest0	0X6745_2301
0X0038 Summ	ary 1 Register	SHA1 DIGEST1	RW sha1	digest1/MD5-digest1	0XEFCD_AB89
0X003C Summ	ary 2 Register	SHA1-DIGEST2	RW sha1	digest2/MD5-digest2	0X98BA_DCFE
0X0040 Summ	ary 3 Register	SHA1-DIGEST3	RW sha1	digest3/MD5-digest3	0X1032_5476
0X0044 Summ	ary 4 Register	SHA1-DIGEST4	RW sha1	digest4/CRC	0XC3D2_E1F0
0X0048 RNG_	result	RNG_RESULT	RW RNG	output	0X0000_0000
02/00.40	Key 3 low register Key30	<	RW Key3	The lower 32 bits of the third input key (of RC4	0X0000_0000
0X004C		7		256bit mode)	
020050	Key 3 low register Key31		RW Key3	High 32-bit third input key (RC4's	0X0000_0000
UCUDU				256bit mode)	
0X0054 TRNG	configuration	PRINCIPAL_CROSS	RW True ran	dom number generator configuration selection	0X40

7.4.2 Configuration registers

Table 32 Encryption module configuration register

bit acc	ess	Instructions	reset value
		RC4_128_256	1'b0
[31]	RW	0: Flag RC4 encryption/decryption is carried out according to the block length of 128bit;	
		1: Flag RC4 encryption/decryption is carried out according to the block length of 256bit.	
		RNG start	1'b0
[30]	RW	1'b0: do not start RNG	
		1'b1: start RNG	
[29]	RW	RNG Load_seed	1'b0
		Hardware automatically clears to 0	
		1'b0: The random number generator will use zero as the seed by default to generate a random number with the corresponding number of digits	
		1'b1: Start generating random numbers after the seed loading is complete	
[28]	RW	RNG switch	1'ЬО
		Controls the number of bits to generate random numbers,	
		1'b0: 16 bits	
		1'b1: 32 bits	
[27]	RW	des_soft_reset	1'b0
1	$\langle \rangle$	des The hardware automatically clears 0 after the soft reset is completed	
		1'b0: do not generate a soft reset and do not change the current state	
		1'b1: The encryption algorithm is reset to the initial state by software	
[26]	RW	aes_soft_reset	1'ЬО
		After the ass soft reset is completed, the hardware automatically clears to 0	
		1'b0: do not generate a soft reset and do not change the current state	

		1'b1: The encryption algorithm is reset to the initial state by software	
[25]	RW	rc4_soft_reset	1'ЬО
		rc4 hardware automatically clears 0 after soft reset is completed	
		1'b0: do not generate a soft reset and do not change the current state	
		1'b1: The encryption algorithm is reset to the initial state by software	
[24]	RW	crc_datarev	1'b0
		1'b0: CRC input data is not reversed	
		1'b1: CRC input data reversed	
[23]	RW	crc_chksrev	1'b0
		1'b0: CRC output result is not inverted	
		1'b1: CRC output result inverted	
[22:21] RW		sub_mode	2'b0
		Algorithm type sub-pattern selection:	
		0: ECB mode of DES/AES encryption algorithm, CRC8 mode of reusable CRC algorithm	
		1: CBC of DES/AES encryption algorithm, CRC16_0 mode of CRC algorithm can be reused	
		2: CTR mode of AES encryption algorithm, CRC16_1 mode of CRC algorithm can be reused	
4	S	3: MAC mode of AES encryption algorithm, CRC32 of CRC algorithm can be reused	
[20]	RW	encrypt_decrypt	1'b0
		Encryption or decryption mode selection for RC4/AES/DES/3DES algorithm:	
		1'b0: encrypted	
		1'b1: Decryption	
[19]	RW	gpsec_int_mask	1'b0

	1'b0: Do not mask encryption/decryption completion interrupt	
	1'b1: Shield encryption/decryption completion interrupt	
[18:16] RW	cypher_mode	3'b0
	Cryptographic Algorithm Type	
	3'b000ÿRSV	
	3'b001ÿRC4	\bigcirc
	3'b010: SHA1	,
	3'b011ÿAES	
	3'b100ÿDES	
	3'b101ÿ3DES	
	3'b110ÿCRC	
	3'b111ÿMD5	
[15: 0] RW	total_byte	16'h0
	The total number of bytes required for encryption and decryption operations.	

7.4.3 TRNG Control Register

bit access		Instructions	reset value
[31: 7]		reserve	
[6]	RW	TRNG_INT_MASK	1'b1
		TRNG interrupt mask	

Table 33 TRNG module control register

		0: TRNG module reports interruption;	
		1: TRNG module does not report interrupt;	
[5:3] RW		TRNG_CP	3'd0
		TRNG module control signal	
[2]	RW	TRNG_DIG_BYPASS	1'b0
		TRNG digital post-processing module bypass:	\bigcirc
		0: TRNG module performs post-processing;	,
		1: The TRNG module does not perform post-processing;	
[1]	RW	TRNG_SEL:	1'b0
		RNG output selection signal.	
		0: Register 0x48 displays the output result of the pseudo-random module;	
		1: Register 0x48 displays the output result of TRNG;	
[0]	RW	TRNG_EN:	1'b0
		TRNG module enable signal. High effective.	
		0: TRNG module stops;	
	4	1: TRNG module starts working;	

7.4.4 Control registers

Table 34 Encryption module control register

bit acce	SS	Instructions	reset value
[31: 2]		reserve	

[1]	RW	sec_stop	1'b0
		Stop the current encryption and decryption operations	
		1'b0: invalid	
		1'b1: encryption/decryption stopped	
[0]	RW	sec_strt	1'b0
		Start encryption and decryption, and after the number of bytes in the encryption and decryption operation is completed, the hardware will automatically clear to 0	\bigcirc
		1'b0: do not start encryption/decryption	
		1'b1: start encryption/decryption	

7.4.5 Status Register

Table 35 Encryption Module Status Register

bit access		Instructions	reset value
[31: 17]		reserve	
[16]	RW	int_flag	1'b0
		Software write 1 to clear	
	à	1'b0: Do not generate encryption/decryption completion interrupt 1'b1: generate encryption/decryption completion interrupt	
[15: 0] RO	N	transfer_cnt	16'h0
		The number of bytes currently encrypted.	
		It is cleared to 0 each time the encryption and decryption are restarted, and restarts counting.	

8 RSA encryption module

8.1 Function overview

RSA operation hardware coprocessor, providing Montgomery (FIOS algorithm) modular multiplication operation function. Cooperate with RSA software library to realize RSA algorithm

Law. Supports 128-bit to 2048-bit modular multiplication.

8.2 Main features

ÿ Support 128-bit to 2048-bit modular multiplication (the length of the modular multiplication is an integer multiple of 32 bits)

ÿ Support D*D; X*Y; D*Y; X*X and other 4 modular multiplication modes

8.3 Functional description

8.3.1 Modular multiplication function

RSA operation hardware coprocessor, providing Montgomery (FIOS algorithm) modular multiplication operation function. Implement RSA together with the RSA software library

algorithm. Supports 128-bit to 2048-bit modular multiplication.

8.4 Register Description

8.4.1 Register list

Table 36 RSA register list

offset address name		abbreviated	access	describe	reset value
0X0000~0X00FC Da	ata X register	XBUF	RW Data	X Register	
0X0100~0X01FC Da	ata Y register	YBUF	RW Data	Y Register	
0X0200~0X02FC da	ta M register	MBUF	RW Data	M Register	
0X0300~0X03FC Da	ata D register	DBUF	RW Data	D Register	

0X0400	RSA Control Register RSACO	N RW		RSA Control Register	0X0000_0000
0X0404	Parameter MC register	RSAMC WO p	arameter MC	register	0X0000_0000
0X0408	Parameter N Register	RSAN	RW parame	ter N register	0X0000_0000

8.4.2 Data X register

XBUF corresponds to the buffer of data X (2048bit), and the corresponding haddr value is 0000h-00fch. The corresponding rules are as follows:

Table 37 RSA Data X Register

000h	004h	008h	 00f8h	00fch
X[31:0]	X[63:32]	X[95:64]	 X[2015:1984] X[204	7:2016]

8.4.3 Data Y Register

YBUF corresponds to the buffer of data Y (2048bit), and the corresponding haddr value is 0100h~01fch. The corresponding rules are as follows:

Table 38 RSA Data Y Register

0100h	0104h	0108h	 01f8h	01fch
AND[31:0]	Y[63:32]	Y[95:64]	 AND[2015:1984] AN	D[2047:2016]

8.4.4 Data M Register

MBUF corresponds to the buffer of data M (2048bit), and the corresponding haddr value is 0200h~02fch. The corresponding rules are as follows:

Table 39 RSA data M register

0200h	0204h	0208h	 02f8h	02fch
M[31:0]	M[63:32]	M[95:64]	 M[2015:1984] M[204]	7:2016]

8.4.5 Data D register

DBUF corresponds to the buffer of data D (2048bit), and the corresponding haddr value is 0300h~03fch. The corresponding rules are as follows:

Table 40 RSA Data D Register

0300h	0304h	0308h	 03f8h	03fch
D[31:0]	D[63:32] D[95:6	¥]	D[2015:198	D[2047:2016
			4]	1

8.4.6 RSA Control Register

RSACON, RSA control register, the actual physical space is a 32bit register.

bit access		Instructions	reset value
[31: 6]		reserve	
[5]	RW	Modulo multiplication enable control bit. The software writes *1* to start the modular multiplication operation, and the hardware automatically clears *0* after the operation is con	npleted. 1'b0
[4]	RW	Provide soft reset function, high effective. The software writes "1" for soft reset, after the reset is completed, the hardware automatically clears	1'b0
		"о"ў	
		1. Set parameters MC and N to 0.	
		2. After starting the modular multiplication (bit5 is set to 1), setting this bit to *1* will terminate the current operation (when bit0 changes to	
		High, indicating that the execution of the soft reset command is completed and the operation is terminated), but the internal data buffer (X, Y, M, D)	
		Part of the calculation results that have been completed in will be retained.	
[2 : 3] RW	\mathcal{A}	Modular multiplication mode selection.	2'b0
		2'b00ÿX = D*D mod M	
		2'b01ÿD = X*Y mod M	
		2'b10ÿX = D*Y mod M	
		2'b11ÿD = X*X mod M	
[1]	RW	reserve	1'b0

Table 41 RSA Control Register

[0]	RW	Modular multiplication operation completed flag, high effective. Set to "1" by hardware and clear to "0" by software. Writing "1" by software is in	<i>v</i> alid. 1'b0

8.4.7 Parameter MC register

Table 42 RSA parameter MC register

bit acces	ss	Instructions	reset value
[31:0] WO		RSAMC corresponds to parameter MC (32bit). The reset value is all 0. The read value is all 0s.	32'h0

8.4.8 Parameter N Register

RSAN corresponds to parameter N (7bit). The N value is the modulo length divided by 32. That is, if you call the 1024bit modular multiplication operation, you need to set N

=32. When writing to this register, the lower 7 bits are valid data, and when reading, the upper 25 bits are 0. The reset value is all 0.

Table 43 RSA parameter N register

bit acces	s	Instructions	reset value
[31: 7]		reserve	
[6 : 0] RW		RSAN corresponds to parameter N (7bit). The N value is the modulo length divided by 32.	7'h0

9 GPIO modules

9.1 Function overview

The GPIO controller realizes the configuration of GPIO attributes by software, enabling users to operate GPIO conveniently.

Each GPIO can be individually configured by software, set it as an input port, output port, set its suspension, pull-up, pull-down state,

Set its rising edge, falling edge, double edge, high level, low level interrupt trigger mode.

9.2 Main Features

ÿ Support GPIO software configuration

ÿ Support GPIO interrupt configuration

ÿ Up to 48 GPIO available

9.3 Functional description

The GPIO provided in W800 is divided into two groups, one group is GPIOA, the other group is GPIOB, the starting addresses of GPIOA and GPIOB registers are different.

Same, but same function.

When the user wants to use a specific IO as a software-controlled GPIO, set the corresponding position in the GPIO multiplexing selection register to 0.

Can.

The GPIO direction control register is used to control the direction of the GPIO, 1 means that the corresponding GPIO is used as an output pin, and 0 means that the corresponding GPIO

as an input pin.

The GPIO pull-up and pull-down control register is used to control the pull-up and pull-down function of the corresponding IO.

The GPIO pull-up control register is active low, setting it to 0 means enabling the pull-up function of the corresponding IO, and setting it to 1 means turning off the pull-up function.

For the attributes of IO, please refer to the IO multiplexing table.

The GPIO pull-down control register is active high, setting it to 1 means enabling the pull-down function of the corresponding IO, and setting it to 0 means turning off the pull-down function.

For the attributes of IO, please refer to the IO multiplexing table.

When the GPIO data register is set to the input state, it indicates the level of the input IO, and when it is set to the output state, it can be specified by writing 1 or 0

IO output level. This register is controlled by the GPIO data enable register, only when the GPIO data enable register is set to 1

At this time, the GPIO data register can be read and written.

The GPIO module provides input signal detection function. By configuring the registers related to GPIO interrupts, high and low level detection and up and down edges can be realized

jump detection. When the input signal corresponding to the IO meets the pre-set conditions, such as high level trigger or rising edge trigger, etc., it will trigger

GPIO interrupt is reported to MCU for processing. The MCU needs to clear the corresponding interrupt status to avoid false triggering of the interrupt.

9.4 Register Description

9.4.1 Register list

Table 44 GPIOA register list

offset address	name	abbreviated acces	S	describe	reset value
0X0000	GPIO data register	GPIO_DATA	RW Read	and write GPIO current data	0X180B
0X0004	GPIO Data Enable Register	GPIO_DATA_E	RW config	ures the enable bit of GPIO_DATA	0XFFFF
		N			
0X0008	GPIO direction control register	GPIO_DIR	RW config	ures GPIO direction	0X0000
0X000C	OPIO pullure control register	GPIO_PULL_E	RW Confi	gure GPIO pull-up	0XFFFF
		N			
0X0010	GPIO Multiplexing Select Register	GPIO_AF_SEL RW Cor	nfigure GPIC	alternate function enable bit	0XFFFF

0X0014	GPIO multiplexing selection register 1	GPIO_SF_S1	RW GPIO	alternate function selection bit high address bit	0X0000
0X0018	GPIO multiplexing selection register 0	GPIO_AF_S0 RW GPIO	alternate func	tion selection bit low address bit	0X0000
0X001C	GPIO pull-down control register	GPIO_DN_ENA RW Con	figure GPIO p	ull-down	0X0000
0X0020	GPIO interrupt trigger configuration register GPIO	_IS	RW config	ures the interrupt trigger mode of GPIO	0X0000
020024	GPIO interrupt edge trigger mode configuration register		RW Config	ure GPIO interrupt edge trigger mode	0X0000
0X0024	GPIO_IBE				
	GPIO interrupt upper and lower edge trigger configuration register		RW configu	re GPIO interrupt upper and lower edge trigger or high and low	0X0000
0,0028	memory	GPIO_IEV		level trigger	
0X002C	GPIO interrupt enable configuration register GPIC	_IE	RW config	ure GPIO interrupt enable	0X0000
0X0030	GPIO Raw Interrupt Status Register	GPIO_RIS	RO query	GPIO raw interrupt status (before MASK) 0X0000	
020024			RO Query	the interrupt status after GPIO masking (MASK	0X0000
0X0034	GPIO Masked Interrupt Status Register GPIO_MI	s A		back)	
0X0038	GPIO Interrupt Clear Control Register GPIO_IC	O,Y	WO contro	s GPIO interrupt clearing	0X0000

Table 45 GPIOB register list

offset address	name	name abbreviated access		describe	reset value
0X0000	GPIO data register	GPIO_DATA	RW Read	and write GPIO current data	0X0000_7304
0X0004	GPIO Data Enable Register	GPIO_DATA_E N	RW Config	ure the enable bit of GPIO_DATA 0X7FFF_FFFF	
0X0008	GPIO direction control register	GPIO_DIR	RW config	ures GPIO direction	0X0000_0000
0X000C	GPIO pull-up control register	GPIO_PULL_E	RW Config	ure GPIO pull-up	0XFFFF_FFFF

0X0010	GPIO Multiplexing Select Register	GPIO_AF_SEL RW Confi	gure GPIO al	ternate function enable bit 0XFFFF_FFFF	
0X0014	GPIO multiplexing selection register 1	GPIO_SF_S1	RW GPIO	multiplexing function selection bit high address bit 0)	0000_0000
0X0018	GPIO multiplexing selection register 0	GPIO_AF_S0 RW GPIO a	alternate func	tion selection bit low address bit 0X0000_0000	
0X001C	GPIO pull-down control register	GPIO_DN_ENA RW Conf	igure GPIO p	ull-down	0X0000_0000
0X0020	GPIO interrupt trigger configuration register GPIO	_IS	RW Config	ure GPIO interrupt trigger mode 0X0000_0000	
020024	GPIO interrupt edge trigger mode configuration register		RW Config	ure GPIO interrupt edge trigger mode 0X0000_0000	
0,0024	GPIO_IBE				
0X0028	GPIO interrupt upper and lower edge trigger configuration register		RW config	ure GPIO interrupt up and down edge trigger or	0X0000_0000
0,0028	memory	GPIO_IEV		High and low level trigger	
0X002C	GPIO interrupt enable configuration register GPIO	_IE	RW config	ure GPIO interrupt enable	0X0000_0000
			RO query (GPIO raw interrupt status (MASK	0X0000_0000
0X0030	GPIO Raw Interrupt Status Register	GPIO_RIS		forward)	
		O,Y	RO Query	the interrupt status after GPIO masking	0X0000_0000
UX0034	GPIO Masked Interrupt Status Register GPIO_MIS			(after MASK)	
0X0038	GPIO Interrupt Clear Control Register GPIO_IC	7	WO contro	s GPIO interrupt clearing	0X0000_0000

9.4.2 GPIO Data Register

Table 46 GPIOA data register

bit acce	ss	Instructions	reset value
[15: 0]	RW	GPIO current data, each BIT corresponds to the corresponding GPIO line	16'h180b

Table 47 GPIOB data register

bit acce	ss	Instructions	reset value
[31: 0]	RW	GPIO current data, each BIT corresponds to the corresponding GPIO line	32'h7304

9.4.3 GPIO Data Enable Register

Table 48 GPIOA data enable register

bit acces	s	Instructions	reset value
[15: 0]	RW	Corresponding to the BIT enable bit of GPIO_DATA, only when the corresponding BIT is 1, the operation of the corresponding bit of GPIO_DATA	16'hfff
		It is effective only if the operation is performed, each BIT corresponds to the corresponding GPIO line, 1 bx:	
		[x] = 0, GPIO_DATA[x] cannot be read or written	
		[x] = 1, GPIO_DATA[x] can be read and written	

Table 49 GPIOB data enable register

bit acces	s	Instructions	reset value
		Corresponding to the BIT enable bit of GPIO_DATA, only when the corresponding BIT is 1, the operation of the corresponding bit of GPIO_DATA	32'h7fff_fff
[31: 0]	RW	[x] = 0, GPIO_DATA[x] cannot be read or written [x] = 1, GPIO_DATA[x] can be read and written	

9.4.4 GPIO direction control register

bit acces	s	Instructions	reset value
[15: 0]	RW	GPIO direction control, each BIT corresponds to the corresponding GPIO line, 1'bx:	16'h0

_		
	[x] = 0, GPIO[x] is input	
	[x] = 1, GPIO[x] is output	

Table 51 GPIOB direction control register

bit acces	s	Instructions	reset value
		GPIO direction control, each BIT corresponds to the corresponding GPIO line, 1'bx:	32'h0
[31: 0]	RW	[x] = 0, GPIO[x] is input	
		[x] = 1, GPIO[x] is output	X

9.4.5 GPIO pull-down control register

Table 52 GPIOA pull-up control register

bit acces	s	Instructions	reset value
		GPIO pull-up control, each BIT corresponds to the corresponding GPIO line, 1'bx: Note: This register is active low	16'hffff
[15: 0]	RW	[x] = 0, GPIO[x] has pull-up [x] = 1, GPIO[x] has no pull-up	

bit acces	s	Instructions	reset value
		GPIO pull-down control, each BIT corresponds to the corresponding GPIO line, 1'bx:	16'h0000
[15:0]	RW	Note: This register is active high	
[15: 0]		[x] = 1, GPIO[x] has pull-down	
		[x] = 0, GPIO[x] no pull-down	

Table 53 GPIOB pull-down control register

bit acce	ss	Instructions	reset value
		GPIO pull-up control, each BIT corresponds to the corresponding GPIO line, 1'bx:	32'hffff_fff
		Note: This register is active low	\cdot
[31: 0]	RW	[x] = 0, GPIO[x] has pull-up	
		[x] = 1, GPIO[x] has no pull-up	Y

bit acce	SS	Instructions	reset value
		GPIO pull-down control, each BIT corresponds to the corresponding GPIO line, 1'bx:	32'h0000_0000
		Note: This register is active high	
[31: 0]	RW	[x] = 1, GPIO[x] has pull-down	
		[x] = 0, GPIO[x] no pull-down	
	4		

9.4.6 GPIO multiplexing selection register

Table 54 GPIOA multiplexing selection register

bit acce	SS	Instructions	reset value
[15: 0]	RW	GPIO multiplexing function enable bit, each BIT corresponds to whether the corresponding GPIO multiplexing function is enabled, 1'bx:	16'hffff

	[x] = 0, GPIO[x] multiplexing function is disabled		
	[x] = 1, GPIO[x] multiplexing function is enabled		
	When [x] = 1, the alternate function depends on the corresponding BIT of the two registers GPIO_AF_S1 and GPIO_AF_S0		
	status.		
	S1.[x] = 0, S0.[x] = 0, alternate function 1 (opt1)		
	S1.[x] = 0, S0.[x] = 1, alternate function 2 (opt2)	\cdot	
	S1.[x] = 1, S0.[x] = 0, alternate function 3 (opt3)		
	S1.[x] = 1, S0.[x] = 1, alternate function 4 (opt4)	7	
	[x] = 0, if GPIO_DIR[x] = 0, and GPIO_PULL_EN[x] = 1, the GPIO is multiplexed as		
	opt6 Analog IO function		
	For the IO multiplexing function, please refer to the chip pin multiplexing relationship		

Table 55 GPIOB multiplexing selection register

bit acces	ss	Instructions	reset value
	\sim	GPIO multiplexing function enable bit, each BIT corresponds to whether the corresponding GPIO multiplexing function is enabled, 1'bx:	32'hfff_fff
	RW	[x] = 0, GPIO[x] multiplexing function is disabled	
[31: 0]		[x] = 1, GPIO[x] multiplexing function is enabled	
[]		When [x] = 1, the alternate function depends on the corresponding BIT of the two registers GPIO_AF_S1 and GPIO_AF_S0	
		status.	
		S1.[x] = 0, S0.[x] = 0, alternate function 1 (opt1)	

		-	
		S1[x] = 0, $S0[x] = 1$, alternate function 2 (opt2)	
		S1.[x] = 1, S0.[x] = 0, alternate function 3 (opt3)	
		S1.[x] = 1, S0.[x] = 1, alternate function 4 (opt4)	
		[x] = 0, if GPIO_DIR[x] = 0, and GPIO_PULL_EN[x] = 1, the GPIO is multiplexed as	
		opt6 Analog IO function	
		For the IO multiplexing function, please refer to the chip pin multiplexing relationship	
9.4.7	GPIO multi	plexing selection register 1	CY

Table 56 GPIOA multiplexing selection register 1

bit acces	S	Instructions	reset value
[15: 0]	RW	GPIO multiplexing function selection bit high address bit, together with GPIO_AF_S0 determine the multiplexing function For the IO multiplexing function, please refer to the chip pin multiplexing relationship	16'h0

Table 57 GPIOB multiplexing selection register 1

bit acces	s	Instructions	reset value
4	\sim	GPIO multiplexing function selection bit high address bit, together with GPIO_AF_S0 determine the multiplexing function	32'h0
[31: 0]	RW		
		For the IO multiplexing function, please refer to the chip pin multiplexing relationship	

9.4.8 GPIO multiplexing selection register 0

Table 58 GPIOA multiplexing selection register 0

bit acce	SS	Instructions	reset value
		GPIO multiplexing function selection bit low address bit, together with GPIO_AF_S1 determine the multiplexing function	16'h0
[15: 0]	RW		
		How to configure see GPIO_AF_SEL register description	

Table 59 GPIOB multiplexing selection register 0

bit acce	SS	Instructions	reset value
[31: 0]	RW	GPIO multiplexing function selection bit low address bit, together with GPIO_AF_S1 determine the multiplexing function How to configure see GPIO_AF_SEL register description	32'h0

9.4.9 GPIO interrupt trigger configuration register

Table 60 GPIOA interrupt trigger mode configuration register

bit acce	SS	Instructions	reset value
[15: 0]	RW	GPIO interrupt trigger mode, each BIT corresponds to the corresponding GPIO line, 1'bx: [x] = 0, GPIO[x] interrupt is edge triggered [x] = 1, GPIO[x] interrupt is level triggered	16'h0

Table 61 GPIOB interrupt trigger mode configuration register

bit acce	SS	Instructions	reset value
[31: 0]	RW	GPIO interrupt trigger mode, each BIT corresponds to the corresponding GPIO line, 1'bx:	32'h0
		[x] = 0, GPIO[x] interrupt is edge triggered	

	[x] = 1, GPIO[x] interrupt is level triggered	

9.4.10 GPIO interrupt edge trigger mode configuration register

Table 62 GPIOA interrupt edge trigger mode configuration register

bit acces	s	Instructions	reset value
		GPIO interrupt edge trigger mode, each BIT corresponds to the corresponding GPIO line, 1'bx:	16'h0
[15: 0]	RW	[x] = 0, GPIO[x] edge trigger interrupt mode is determined by GPIO_IEV	
		[x] = 1, both edges of GPIO[x] trigger interrupt	Y

Table 63 GPIOB interrupt edge trigger mode configuration register

bit access		Instructions	reset value
		GPIO interrupt edge trigger mode, each BIT corresponds to the corresponding GPIO line, 1'bx:	32'h0
[31: 0]	RW	[x] = 0, GPIO[x] edge trigger interrupt mode is determined by GPIO_IEV	
		[x] = 1, both edges of GPIO[x] trigger interrupt	

9.4.11 GPIO interrupt upper and lower edge trigger configuration register

Table 64 GPIOA interrupt upper and lower edge trigger configuration register

bit acces	s	Instructions	reset value
[15: 0]	RW	GPIO interrupt upper and lower edge trigger or high and low level trigger selection, each BIT corresponds to the corresponding GPIO line,	16'h0
		1'bxÿ	
		[x] = 0, GPIO[x] interrupt is triggered by low level or falling edge	
		[x] = 1, GPIO[x] interrupt is triggered by high level or rising edge	

Table 65 GPIOB interrupt upper and lower edge trigger configuration register

bit acces	s	Instructions	reset value
		GPIO interrupt upper and lower edge trigger or high and low level trigger selection, each BIT corresponds to the corresponding GPIO line,	32'h0
		1'bxÿ	
[31: 0]	RW	[x] = 0, GPIO[x] interrupt is triggered by low level or falling edge	
		[x] = 1, GPIO[x] interrupt is triggered by high level or rising edge	

9.4.12 GPIO Interrupt Enable Configuration Register

Table 66 GPIOA interrupt enable configuration register

bit acces	S	Instructions	reset value
		GPIO interrupt enable control, each BIT corresponds to the corresponding GPIO line, 1'bx:	16'h0
[15: 0]	RW	[x] = 0, GPIO[x] interrupt disabled [x] = 1, GPIO[x] interrupt enable	
		[x] = 1, GPIO[x] interrupt enable	

Table 67 GPIOB interrupt enable configuration register

bit acces	s	Instructions	reset value
	1	GPIO interrupt enable control, each BIT corresponds to the corresponding GPIO line, 1'bx:	32'h0
[31: 0]	RW	[x] = 0, GPIO[x] interrupt disabled	
		[x] = 1, GPIO[x] interrupt enable	

9.4.13 GPIO Raw Interrupt Status Register

Table 68 GPIOA Raw Interrupt Status Register

bit acces	s	Instructions	reset value
		GPIO raw interrupt status (before MASK), each BIT corresponds to the corresponding GPIO line, 1'bx:	16'h0
[15: 0]	RW	[x] = 0, GPIO[x] no interrupt generated	
		[x] = 1, GPIO[x] has an interrupt	

Table 69 GPIOB Raw Interrupt Status Register

bit acces	S	Instructions	reset value
		GPIO raw interrupt status (before MASK), each BIT corresponds to the corresponding GPIO line, 1'bx:	32'h0
[31: 0]	RW	[x] = 0, GPIO[x] no interrupt generated	
		[x] = 1, GPIO[x] has an interrupt	

9.4.14 GPIO Masked Interrupt Status Register

Table 70 GPIOA Masked Interrupt Status Register

bit acces	s	Instructions	reset value
		GPIO masked interrupt status (after MASK), each BIT corresponds to the corresponding GPIO line, 1'bx:	16'h0
[15: 0]	RW	[x] = 0, GPIO[x] no interrupt generated (after MASK)	
		[x] = 1, GPIO[x] interrupt generated (after MASK)	

Table 71 GPIOB Masked Interrupt Status Register

bit access		Instructions	reset value
		GPIO masked interrupt status (after MASK), each BIT corresponds to the corresponding GPIO line, 1'bx:	32'h0
[31: 0]	RW	[x] = 0, GPIO[x] no interrupt generated (after MASK)	
		[x] = 1, GPIO[x] interrupt generated (after MASK)	

9.4.15 GPIO Interrupt Clear Control Register

Table 72 GPIOA Interrupt Clear Control Register

bit acces	s	Instructions	reset value
[15: 0]	RW	GPIO interrupt clear control, each BIT corresponds to the corresponding GPIO line, 1'bx: [x] = 0, no action	16'h0
		[x] = 1, clear GPIO[x] interrupt status	

Table 73 GPIOB Interrupt Clear Control Register

bit acces	s	Instructions	reset value
[31: 0]	RW	GPIO interrupt clear control, each BIT corresponds to the corresponding GPIO line, 1'bx: [x] = 0, no action [x] = 1, clear GPIO[x] interrupt status	32'h0

10 High Speed SPI Device Controller

10.1 Function overview

Compatible with the general SPI physical layer protocol, by agreeing on the data format for interaction with the host, the host can perform high-speed access to the device, the highest support

The working frequency is 50MHZ.

10.2 Main Features

ÿ Compatible with general SPI protocol

ÿ Selectable level interrupt signal

ÿ Support up to 50Mbps rate

ÿ Simple frame format, full hardware analysis and DMA

10.3 Functional description

10.3.1 Introduction to SPI protocol

SPI works in master-slave mode, usually there is one master device and one or more slave devices, at least 4 wires are required, in fact 3 wires are also possible (single

when transferring). They are SDI (data input), SDO (data output), SCLK (clock), CS (chip select).

(1) SDI – Serial Data In, serial data input

(2) SDO - Serial Data Out, serial data output

(3) SCLK – Serial Clock, clock signal, generated by the master device

(4) CS - Chip Select, slave device enable signal, controlled by the master device.

Among them, CS is the control signal whether the slave chip is selected by the master chip, that is to say, only when the chip select signal is a predetermined enable signal (high

Potential or low potential), the master chip is only valid for the operation of the slave chip. This makes it possible to connect multiple SPI devices on the same bus.

In addition to the above 4 signal lines, HSPI also adds an additional INT line, which generates a drop when the slave device has data to upload

The interrupt along the edge realizes the active reporting of data.

SPI communication is completed through data exchange, the data is transmitted bit by bit, the clock pulse is provided by SCLK, and SDI and SDO are based on

This pulse completes the data transfer. The data output is through the SDO line, and the data changes on the rising or falling edge of the clock, and changes on the following falling edge or

rising edge is read. Complete one-bit data transmission, input also uses the same principle. Therefore, at least 8 clock signal changes (rising edge

and the falling edge once), to complete the transmission of 8-bit data.

The SCLK signal line is controlled by the master device, and the slave device cannot control the signal line. In an SPI-based device, there is at least one master device.

10.3.2 SPI working process

The HSPI inside the chip works with the wrapper controller, and the wrapper controller integrates DMA, which is realized by DMA

Data exchange between HSPI internal FIFO and on-chip buffer. This operation is implemented by hardware, and the software does not need to care about data sending and receiving

process, you only need to configure the sending and receiving data linked list, and operate the corresponding registers of the wrapper controller.

For a detailed introduction to the wrapper controller, please refer to the relevant chapters.

10.4 Register Description

10.4.1 Register list for internal operation of HSPI chip

Table 74 HSPI internal access registers

	offset address	name	abbreviation	access	describe	reset value
l						

0X0000	HSPI FIFO clear register CLEAR FIFO		RW Clear	s the contents of the Tx and Rx FIFOs while	0X0000_0000
				Circuitry that resets the system clock domain synchronously	
0X0004	HSPI Configuration Register		RW configure:	the transmission mode of SPI and the big and small end configuration	0X0000_0000
	Horr Comgaration Register	371_070		place	
0,0008			RW config	ures the ahb master to access the bus	0X0000_0000
0,0000	HSPI mode configuration register MODE_CFC			burst length	
0,0000		SPI_INT_CPU_	RW config	uration interrupt is enabled	0X0000_0003
0X000C	HSPI Interrupt Configuration Register	MASK		• C) Y	
0,0010		SPI_INT_CPU_	RW Get a	nd clear interrupt status	0X0000_0000
	HSPI Interrupt Status Register	TTS	X		
0X0018	HSPI data upload length register RX_DAT_LE	N RW configures the lengt	h of data tha	t can be uploaded	0X0000_0000

10.4.1.1 HSPI FIFO flush register

Table 75 HSPI FIFO flush register

bit acce	SS	Instructions	reset value
[31: 1] RO		reserve	
	$\langle \rangle$	Clear FIFOs, clears the contents of Tx and Rx FIFO, and simultaneously resets the circuit of the system clock domain (this	1'b0
[0]	RW	except the registers in the list)	
		0: Do not clear FIFO	
		1: clear valid	
		Set by software, cleared by hardware	
		Note: If you want to reset the whole circuit, you need to use the asynchronous reset pin of this module: rst_n	

10.4.1.2 HSPI Configuration Register

bit acc	ess	Instructions	reset value
[31: 4] RO		reserve	
	RW	Bigendian, spi interface supports big endian selection of data.	1'b0
[3]		0: Support small segment data transmission	
		1: Support big-endian data transmission	
		spi_tx_always_drive	1'b0
[2]	RW	0: The spi output is only valid when the chip selection is valid, and it is high impedance at other times	
		1: spi output is always valid	
		SPI CPHA	1'b0
[1]	RW	0: Transmission mode A	
		1: Transmission mode B	
		SPI CPOL, polarity of SCK at IDLE	1'b0
[0]	RW	0: 0 when SCK is IDLE	
	$\langle \rangle$	1: 1 when SCK is IDLE	

Table 76 HSPI configuration register

10.4.1.3 HSPI Mode Configuration Register

Table 77 HSPI Mode Configuration Register

bit acc	ess	Instructions	reset value
[31: 1] RO		reserve	

[0]	Burst len, the burst length when the ahb master accesses the bus	1'b0
	0: burst len is 1 word	
	1: burst len is 4 words	
	It is recommended to set it as a burst transmission of 4 words, so that when the frequency of the spi interface is high, it can ensure continuous flow	

10.4.1.4 HSPI Interrupt Configuration Register

bit acce	SS	Instructions	reset value
[31: 2] RO		reserve	
		IntEnRxOverrun, RxOverrun interrupt enable	1'b1
[1]	RW	0: Rx FIFO overflow interrupt enable	
		1: Rx FIFO overflow interrupt disabled	
		IntEnTxUnderrun, TxUnderrun interrupt enable	1'b1
[0]	RW	0: Tx FIFO underflow interrupt enable	
		1: Tx FIFO underflow interrupt disabled	

Table 78 HSPI Interrupt Configuration Register

10.4.1.5 HSPI Interrupt Status Register

Table 79 HSPI Interrupt Status Register

bit acce	SS	Instructions	reset value
[31: 2] RO		reserve	
[1]	DW	RxOverrun	1'b0
	K V V	0ÿRx FIFO overflow	

		1ÿRx FIFO overflow	
		Write 1 to clear	
		TxUnderrun	1'b0
	DW/	0ÿTx FIFO underflow	
[0]	RW	1ÿTx FIFO underflow	
		Write 1 to clear	

10.4.1.6 HSPI data upload length register

Table 80 HSPI data upload length register

bit acces	S	Instructions	reset value
[31:16] RO		reserve	
[15: 0] RW		Rx_dat_len Indicates the length of data that can be uploaded, in bytes	16'h0
		The uploaded length is an integer multiple of words, if the uploaded length is less than a whole word, it will be rounded up.	

10.4.2 Host-side access to HSPI controller register list

The host side accesses the SPI interface registers through a fixed SPI command format. The command length is fixed at one byte, and the data length is fixed at two

byte.

Table 81 HSPI Interface Configuration Register (Master Access)

offset					
address	name	abbreviation	access	describe	reset value

0X02 Get da	ata length register	RX_DAT_LEN	RO	When uploading data, the spi master is used to obtain the slave The length of the data read by the device	0X0000
0X03 Send	data flag register	TX_BUFF_AVAIL	RO	When the master sends data to the slave, it is used to judge whether it is possible Download data or command	0X0000
0X04 Reser	ved	RSV	RO		
0X05 interru	pt configuration register	SPI_INT_HOST_MASK RW Whether to r	nask interrupt		0X0000
0X06 interru	pt status register	SPI_INT_HOST_STTS	RO	Interrupt status register, the spi master queries this bit Confirm whether there is data uploaded	0X0000
0X07 Reser	ved	RSV	RO		
0X00 data p	ort 0	DAT_PORT0	RW	The Spi master communicates with the slave device through this register port Send data, send the previous data frame using this port	
0X10 data p	ort 1	DAT_PORT1	RW	The Spi master communicates with the slave device through this register port Send data, send the last data frame to use the port	
0X01 comm	and port 0	DN_CMD_PORT0	WHERE	The Spi master sends the slave device through this register Command data, send the previous command data to use the port	
0X11 comm	and port 1	DN_CMD_PORT1	WHERE	The Spi master sends the slave device through this register Command data, send the last frame of command data to make use this port	

10.4.2.1 HSPI Get Data Length Register

Table 82 HSPI get data length register

bit	access	Instructions	reset value
		The spi host read-only register is mainly used to know how much data is read from the device when uploading data	16'h0
[15: 0] RO		However, in this module, the upload length is an integer multiple of words. If the upload length value is not a whole word, the host reads	\bigcirc
		Round up when counting, that is, read more redundant bytes	

10.4.2.2 HSPI sent data flag register

Table 83 HSPI sent data flag register

bit	access	Instructions	reset value
[15: 2] RO		reserve	
		tx_cmdbuff_avail	1'b0
[1]	RO	Flag to send cmd buff is available, if available, the host can send cmd.	
		0: send buff is not available	
	$\langle n \rangle$	1: send buff available	
		tx_buff_avail	1'b0
[0]	RO	Flag sending buff is available, if available, the host can send data.	
		0: send buff is not available	
		1: send buff available	

10.4.2.3 HSPI Interrupt Configuration Register

Table 84 HSPI Interrupt Configuration Register

bit	access	Instructions	reset value
[15: 1] RO		reserve	
		IntMaskup_dat_cmd_rdy	1'b0
		interrupt mask	\bigcirc
[0]	RO	0: Interrupts are not masked, interrupts can be generated	
		1: Interrupts are masked	/
		Note: It is recommended to use the host's own internal interrupt mask, which can improve efficiency.	

10.4.2.4 HSPI Interrupt Status Register

Table 85 HSPI Interrupt Status Register

bit	access	Instructions	reset value
[15: 1] RO		reserve	
[0]	RO	up_dat_cmd_rdy	1'b0
		Status register for generating interrupts to the SPI master	
		0: Data or command is not ready	
		1: Data or command is ready	
		legible	

10.4.2.5 HSPI data port 0

Table 86 HSPI data port 0

bit	access	Instructions	reset value
		The SPI host performs data transmission through the register port and the device, and writes the data to the register to send the data.	
	RW	Data, read from this register, you can upload data. If the frame being transmitted requires multiple transmissions to complete	
		If successful, the last transmission uses the register port DAT_PORT1, and the others use DAT_PORT0.	

10.4.2.6 HSPI Data Port 1

Table 87 HSPI data port 1

bit	access	Instructions	reset value
	RW	The SPI host performs data transmission through the register port and the device, and writes the data to the register to send the data. Data, read from this register, you can upload data. If the frame being transmitted requires multiple transmissions to complete If successful, the last transmission uses the register port DAT_PORT1, and the others use DAT_PORT0.	

10.4.2.7 HSPI Command Port 0

Table 88 HSPI command port 0

bit	access	Instructions	reset value
		The SPI host interacts with the device through the register port, and writes to the register to issue commands.	
	$\langle h \rangle$	make. If the command being transmitted requires multiple transfers to complete, the last transfer uses the register	
	RW	Port DN_CMD_PORT1, others use DN_CMD_PORT0.	
		Note: This window is only used to issue commands for driver and firmware negotiation.	

10.4.2.8 HSPI Command Port 1

Table 89 HSPI command port 1

bit	access	Instructions	reset value
		The SPI host interacts with the device through the register port, and writes to the register to issue commands.	
		make. If the command being transmitted requires multiple transfers to complete, the last transfer uses the register	
	RW	Port DN_CMD_PORT1, others use DN_CMD_PORT0.	
		Note: This window is only used to issue commands for driver and firmware negotiation.	

10.4.3 High Speed SPI Device Controller Interface Timing

Mainly describe the SPI read and write timing, and how the main SPI interacts with HSPI for data.

10.4.3.1 Data format

The data format is divided into two parts: the command field and the data field, as shown in the figure below. The fixed length of the command field is 8bit, and the length of the data field depends on the access object

Different, different lengths, see below for details.

The highest bit of the command field is the read and write flag bit, and the remaining 7 bits are the address.

 $\ddot{y} \ 0$ means read data from the next 7bit address

ÿ 1 means write data to the next 7bit address

Figure 6 HSPI register read operation (big endian mode)

Figure 11 Port write operation (big endian mode)

Figure 13 Port write operation (little endian mode)

Note: There is no waiting time between the command and the data, that is, after the command field is transmitted, the data transmission can be followed immediately, and no idle clock is required

or free time. A time delay is fine, but no idle clocks can appear.

10.4.3.2 Timing

This module supports half-duplex, and the supported timing is divided into 4 types according to the clock phase and sampling point. The following timings just give the clock

phase and sampling relationship. It should be noted that the chip supports by default (CPOL=0, CPHA=0).

Note: There is no waiting time between the command and the data, that is, after the command field is transmitted, the data transmission can be followed immediately, and no idle clock is required

or free time. A time delay is fine, but no idle clocks can appear.

Figure 14 CPOL=0, CPHA=0

Figure 15 CPOL=0, CPHA=1

Figure 17 CPOL=1, CPHA=1

10.4.3.3 Interrupts

The interrupt signal is sent from the slave device to the master device, triggered by the SPI_INT pin, and is active at low level.

spi_int mainly notifies the spi host that data or commands need to be uploaded, and the interface registers that the spi host cares about when processing interrupts are:

ÿ SPI_INT_HOST_MASK

ÿ SPI_INT_HOST_STTS

ÿ RX_DAT_LEN

Note: Each uploaded frame corresponds to an interrupt. Only after the transmission of the current frame that needs to be uploaded is completed, if there are still frames to be uploaded, at this time, the

Generate a new interrupt. The figure below is one way to handle interrupts.

10.4.3.4 Main SPI send and receive data workflow

Figure 19 Flow chart of downlink data

Note: The length of the sent data must be in words, if it is not a whole word, fill it with 0.

Note: The length of the issued command must be in words, if it is not a whole word, fill it with 0.

Figure 21 Uplink data (command) flow chart

The flow of uplink data is the same as that of uplink commands.

It should be noted here that the length of the upstream data must be in words, if the effective length is not a whole word, the excess data at the end can be thrown away

Lose.

It should be noted that there are two channels between the master and the slave, data and command, to exchange data, and users can choose a channel to use according to their needs.

Use or both. The maximum data length of one interaction of the command channel is 256 bytes, and the maximum data length of one interaction of the data channel is

1500 bytes. The data length limit is controlled by the slave device. If the length exceeds the limit, the data structure of the slave device will be destroyed.

11 SDIO device controller

11.1 Function overview

W800 integrates the SDIO device interface, as a slave device, to complete the data interaction with the host. Internally integrated 1024byte asynchronous

FIFO, to complete the data interaction between the host and the chip.

11.2 Main Features

ÿ Compatible with SDIO Card Specification 2.0

ÿ Support host rate 0~50MHz

ÿ Support up to 1024 bytes Block

ÿ Support 1-bit SD and 4-bit SD modes

11.3 Functional description

11.3.1 SDIO bus

The SDIO bus is similar to the USB bus, and the SDIO bus also has two ends, one end is the host end, and the other end is the device end, using HOST

The design of DEVICE is to simplify the design of DEVICE, and all communication is started by issuing commands from the HOST. exist

As long as the DEVICE side can parse the HOST command, it can communicate with the HOST, and the SDIO HOST can connect to multiple

DEVICEÿ

In the SDIO bus definition, the DAT1 signal line is multiplexed as an interrupt line. In the 1BIT mode of SDIO, DAT0 is used to transmit data, DAT1

Used as a break line. In the 4BIT mode of SDIO, DAT0 -DAT3 are used to transmit data, and DAT1 is multiplexed as an interrupt line.

11.3.2 SDIO commands

On the SDIO bus, the HOST end initiates the request, and then the DEVICE end responds to the request, where the request and response will contain data information:

ÿ Command: The command used to start the transmission is sent from the HOST to the DEVICE, and the command is sent through the CMD message

transmitted by the number line;

ÿ Response: The response is returned by DEVICE, as the response of Command. It is also transmitted through the CMD line;

ÿ Data: Data is transmitted bidirectionally. It can be set to 1-wire mode or 4-wire mode. Data is passed through DAT0-

DAT3 signal line transmission.

Each operation of SDIO is initiated by HOST on the CMD line. For some CMDs, DEVICE needs to return a Response.

Others don't.

For the read command, first HOST will send a command to DEVICE, then DEVICE will return a handshake signal, at this time, when HOST

After receiving the response handshake signal, the data will be placed on the 4-bit data line, and the CRC check code will be followed while transmitting the data. When the whole

After the read transmission is completed, HOST will send another command to notify DEVICE that the operation is complete, and DEVICE will return a response at the same time.

For writing commands, first HOST will send commands to DEVICE, then DEVICE will return a handshake signal, at this time, when HOST

After receiving the response handshake signal, the data will be placed on the 4-bit data line, and the CRC check code will be followed while transmitting the data. When the whole

After the first write transmission is completed, HOST will send another command to notify DEVICE that the operation is complete, and DEVICE will return a response at the same time.

11.3.3 SDIO Internal Storage

The SDIO device has a fixed memory map inside, including a general information area (CIA) and a special function area (function unique area).

The registers in the CIA include I/O port functions, interrupt generation, and port work information, which can be defined for the CIA by reading and writing function 0

Registers for related operations. CIA contains CCCR, FBR and CIS three aspects of information. Among them, CCCR defines the common

Common control register, the host can check the SDIO card and operate the port by operating CCCR, the address of CCCR is 0X00-

0XFF. FBR defines the supported port function 1 to port function 7 operations, including the requirements and functions of each port, power control, etc.,

The address of FBR is 0Xn00-0Xnff (where n is the function port number). CIS defines some information structures of the card, the address is 0X1000-

0X17FFF, CIS has a public CIS and each function port's own CIS, where the initial address of the public CIS is in the CIS Pointer of CCCR

In the domain, the CIS of each port function is in the CIS Pointer domain of each functional port FBR.

The storage map of the CIA is shown in the figure below.

Figure 22 SDIO internal memory mapping

The description of each register in CIA refers to the following. For an in-depth look at the CIA, see the SDIO Protocol Specification.

11.4 Register Description

11.4.1 Register List

11.4.2 SDIO Fn0 Register

The Fn0 register is a register specified by the SDIO protocol, and its address range is: 0x0000-0x1FFFF, a total of 128K. starting address is

0x00000ÿ

The Fn0 register is accessed by the SDIO host through the CMD52 command, the offset address is the access address, and the function number is 0.

CCCR/SDIO Revision D Specification Revision I/O Enable I/O Ready Int Enable Int Pending I/O Abort Bus Interface Control ard Capability Common CIS Pointer	SDIO bit 3 RFU IOE7 IOR7 IEN7 INT7 RFU CD Disable 4BLS	SDIO bit 2 RFU IOE6 IOR6 IEN6 INT6 RFU SCSI LSC Pointer to	SDIO bit 1 RFU IOE5 IOR5 IEN5 INT5 RFU ECSI E4MI card's co	SDIO bit 0 RFU IOE4 IOR4 IEN4 INT4 RFU RFU S4MI	CCCR bit 3 SD bit 3 IOE3 IOR3 IEN3 INT3 RES RFU SBS	CCCR bit 2 SD bit 2 IOE2 IOR2 IEN2 INT2 AS2 RFU SRW	CCCR bit 1 SD bit 1 IOE1 IOR1 IEN1 INT1 AS1 Bus Width 1 SMB	CCCR bit 0 SD bit 0 RFU RFU IENM RFU AS0 Bus Width C SDC				
Revision O Specification Revision I/O Enable I/O Ready Int Enable Int Pending I/O Abort Bus Interface Control ard Capability Common CIS Pointer	bit 3 RFU IOE7 IOR7 IEN7 INT7 RFU CD Disable 4BLS	bit 2 RFU IOE6 IOR6 IEN6 INT6 RFU SCSI LSC Pointer to	bit 1 RFU IOE5 IOR5 IEN5 INT5 RFU ECSI E4MI card's co	bit 0 RFU IOE4 IOR4 IEN4 INT4 RFU RFU S4MI	bit 3 SD bit 3 IOE3 IOR3 IEN3 INT3 RES RFU SBS	bit 2 SD bit 2 IOE2 IOR2 IEN2 INT2 AS2 RFU SRW	bit 1 SD bit 1 IOE1 IOR1 IEN1 INT1 AS1 Bus Width 1 SMB	bit 0 SD bit 0 RFU IENM RFU AS0 Bus Width 0 SDC				
D Specification Revision I/O Enable I/O Ready Int Enable Int Pending I/O Abort Bus Interface Control ard Capability Common CIS Pointer	RFU IOE7 IOR7 IEN7 INT7 RFU CD Disable 4BLS	RFU IOE6 IOR6 IEN6 INT6 RFU SCSI LSC Pointer to	RFU IOE5 IOR5 IEN5 INT5 RFU ECSI E4MI card's co	RFU IOE4 IOR4 IEN4 INT4 RFU RFU S4MI	SD bit 3 IOE3 IOR3 IEN3 INT3 RES RFU SBS	SD bit 2 IOE2 IOR2 IEN2 INT2 AS2 RFU SRW	SD bit 1 IOE1 IOR1 IEN1 INT1 AS1 Bus Width 1 SMB	SD bit 0 RFU RFU IENM RFU AS0 Bus Width 0 SDC				
Revision I/O Enable I/O Ready Int Enable Int Pending I/O Abort Bus Interface Control ard Capability Common CIS Pointer	IOE7 IOR7 IEN7 INT7 RFU CD Disable 4BLS	IOE6 IOR6 IEN6 INT6 RFU SCSI LSC Pointer to	IOE5 IOR5 IEN5 INT5 RFU ECSI E4MI card's co	IOE4 IOR4 IEN4 INT4 RFU RFU S4MI	bit 3 IOE3 IOR3 IEN3 INT3 RES RFU SBS	bit 2 IOE2 IOR2 IEN2 INT2 AS2 RFU SRW	bit 1 IOE1 IOR1 IEN1 INT1 AS1 Bus Width 1 SMB	bit 0 RFU IENM RFU AS0 Bus Width 0 SDC				
I/O Enable I/O Ready Int Enable Int Pending I/O Abort Bus Interface Control ard Capability Common CIS Pointer	IOE7 IOR7 IEN7 INT7 RFU CD Disable 4BLS	IOE6 IOR6 IEN6 INT6 RFU SCSI LSC Pointer to	IOE5 IOR5 IEN5 INT5 RFU ECSI E4MI card's co	IOE4 IOR4 IEN4 INT4 RFU RFU S4MI	IOE3 IOR3 IEN3 INT3 RES RFU SBS	IOE2 IOR2 IEN2 INT2 AS2 RFU SRW	IOE1 IOR1 IEN1 INT1 AS1 Bus Width 1 SMB	RFU RFU IENM RFU AS0 Bus Width 0 SDC				
I/O Ready Int Enable Int Pending I/O Abort Bus Interface Control ard Capability Common CIS Pointer	IOR7 IEN7 INT7 RFU CD Disable 4BLS	IOR6 IEN6 INT6 RFU SCSI LSC Pointer to	IOR5 IEN5 INT5 RFU ECSI E4MI card's co	IOR4 IEN4 INT4 RFU RFU S4MI	IOR3 IEN3 INT3 RES RFU SBS	IOR2 IEN2 INT2 AS2 RFU SRW	IOR1 IEN1 INT1 AS1 Bus Width 1 SMB	RFU IENM RFU AS0 Bus Width 0				
Int Enable Int Pending I/O Abort Bus Interface Control ard Capability Common CIS Pointer	IEN7 INT7 RFU CD Disable 4BLS	IEN6 INT6 RFU SCSI LSC Pointer to	IEN5 INT5 RFU ECSI E4MI card's co	IEN4 INT4 RFU RFU S4MI	IEN3 INT3 RES RFU SBS	IEN2 INT2 AS2 RFU SRW	IEN1 INT1 AS1 Bus Width 1 SMB	IENM RFU AS0 Bus Width 0				
Int Pending I/O Abort Bus Interface Control ard Capability Common CIS Pointer	INT7 RFU CD Disable 4BLS	INT6 RFU SCSI LSC Pointer to	INT5 RFU ECSI E4MI card's co	INT4 RFU RFU S4MI	INT3 RES RFU SBS	INT2 AS2 RFU SRW	INT1 AS1 Bus Width 1 SMB	RFU AS0 Bus Width 0				
I/O Abort Bus Interface Control ard Capability Common CIS Pointer	RFU CD Disable 4BLS	RFU SCSI LSC Pointer to	RFU ECSI E4MI card's co	RFU RFU S4MI	RES RFU SBS	AS2 RFU SRW	AS1 Bus Width 1 SMB	AS0 Bus Width 0				
Bus Interface Control ard Capability Common CIS Pointer	CD Disable 4BLS	SCSI LSC Pointer to	ECSI E4MI card's co	RFU S4MI	RFU SBS	RFU SRW	Bus Width 1 SMB	Bus Width 0				
Control ard Capability Common CIS Pointer	Disable 4BLS	LSC Pointer to	E4MI card's co	S4MI	SBS	SRW	Width 1 SMB	Width 0				
ard Capability Common CIS Pointer	4BLS	LSC Pointer to	E4MI card's co	S4MI	SBS	SRW	SMB	SDC				
Common CIS Pointer		Pointer to	card's co	mmon Ca	11.6			000				
Pointer				Pointer to card's common Card Information Structure (CIS)								
		2										
Bus Suspend	RFU	RFU	RFU	RFU	RFU	RFU	BR	BS				
unction Select	DF	RFU	RFU	RFU	FS3	FS2	FS1	FS0				
Exec Flags	EX7	EX6	EX5	EX4	EX3	EX2	EX1	EXM				
Ready Flags	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RFM				
N0 Block Size			I/O	block size	for Function	on 0						
ower Control		Rese	ved for F	uture Use	(RFU)		EMPC	SMPC				
High-Speed	RFU	RFU	RFU	RFU	RFU	RFU	EHS	SHS				
RFU			Rese	rved for Fu	iture Use	(RFU)						
1962-1426 - KECTINE												
Reserved for		Ar	ea Reserv	ved for Ver	ndor Uniqu	ue Registe	ers					
Vendors												
	Exec Flags Ready Flags IO Block Size ower Control High-Speed RFU RFU Reserved for Vendors	Exec Flags EX7 Ready Flags RF7 IO Block Size ower Control High-Speed RFU RFU RFU REU RFU RFU Reserved for Vendors	Inclinit Select Dir INTO Exec Flags EX7 EX6 Ready Flags RF7 RF6 IO Block Size	Incluin Select Di INFO INFO Exec Flags EX7 EX6 EX5 Ready Flags RF7 RF6 RF5 I0 Block Size I/O ower Control Reserved for F High-Speed RFU RFU RFU RFU Reserved for F RFU RFU Reserved for F RFU Reserved for F F	Incluin Select Di Nro Nro Nro Exec Flags EX7 EX6 EX5 EX4 Ready Flags RF7 RF6 RF5 RF4 I0 Block Size I/O block size I/O block size ower Control Reserved for Future Use High-Speed RFU RFU RFU RFU RFU RFU RFU RFU RFU RFU RFU RFU Figure 23 CCCR register storage structure	Incluin Select Di INFO INFO <td>Incluin Select Dir Intro Intres Intro</td> <td>Incluin Select Di INPO INPO</td>	Incluin Select Dir Intro Intres Intro	Incluin Select Di INPO INPO				

Address	7	7 6 5 4 3 2 1									
0x100	Function 1 Function 1 RFU RFU Function 1 Standard SDIO Function										
	CSA	supports				interfac	ce code				
	enable	CSA									
0x101	Function 1	unction 1 Extended standard SDIO Function interface code									
0x102	RFU RFU RFU RFU RFU EPS										
0x103-0x108	Reserved for	Reserved for Future Use (RFU)									
0x109-0x10B	Pointer to F	Pointer to Function 1 Card Information Structure (CIS)									
0x10C-0x10E	Pointer to F	unction 1 Co	de Storage	Area (CSA)						
0x10F	Data acces	s window to I	Function 1 (Code Stora	ge Area (CS	SA)					
0x110-0x111	I/O block siz	ze for Function	on 1								
0x112-0x1FF	Reserved for	or Future Use	e								
0x200-0x7FF	Function 2	to 7 Function	Basic Infor	mation Reg	gisters (FBF	R)					
0x800-0xFFF	Reserved for	or Future Use	9								

Figure 24 FBR1 register structure

Address	7	7 6 5 4 3 2 1 0											
0x0001000	Card (Card Common Card Information Structure (CIS) area for card common and all functions											
- 0x017FFF													
0x018000-		Reserved for Future Use											
0x01FFFF													

Figure 25 CIS storage space structure

11.4.2.1 SDIO CCCR Register and FBR1 Register List

Table 90 SDIO CCCR	register and FBR1	register list

offset	abbreviate	d name acce	55	describe	reset value
0X00	CCCR/SDI	SDIOx RO		[3:0], indicates the supported CCCR/FBR format	4'h2
	O Revision			4'h0ÿ CCCR/FBR Version 1.00	
				4'h1ÿCCCR/FBR Version 1.10	
				4'h2ÿCCCR/FBR Version 1.20	
				4'h3-4'hFÿRsv	
				Represented by CIA Register[3:0]	

				-	
		CCCRx RO		[7:4], indicates the supported SDIO protocol version	4'h3
				4'h0ÿ SDIO Version 1.00	
				4'h1ÿ SDIO Version 1.10	
				4'h2ÿ SDIO Version 1.20 (unreleased)	
				4'h3ÿ SDIO Version 2.00	
				4'h4-4'hFÿ Rsv	
				Represented by CIA Register[7:4]	
0X01	SD	SDx	RO [3:0], i	indicates the supported SD protocol version	4'h2
	pecificatio			4'h0ÿSD Physical Version 1.01 (March 2000)	
	n			4'h1ÿSD Physical Version 1.10 (October 2004)	
	Revision			4'h2ÿSD Physical Version 2.00 (May 2006)	
				4'h3-4'hFÿ Rsv	
				Represented by CIA Register[11:8]	
			RO	RFU	4'h0
0X02	I/O Enable IOEx		RO	RFU	1'b0
		N	RW [7:1],	Function enable, bit1-bit7 correspond to 7 functions respectively, corresponding to	7'b0
				If the SD host sets the corresponding bit to 1, then the corresponding function is enabled, otherwise the corresponding	
				function doesn't work.	
				Note: CIS0, CIS1 and CSA are placed in Fn1, even if Fn1 is not enabled,	
				The SD host can also read and write these three areas (CIS0, CIS1 cannot	
				Write).	
0X03	I/O Ready IORx		RO	RFU	1'b0

			RO	[7:1], IOR has a total of 7 bits, corresponding to the status of 7 functions, if the corresponding bit	7'b0
				If it is 1, it means that the function can work.	
				In this design, HC8051 configures the function of program register	
				The ready bit is 1, so this register bit1=1, so that the flag Fn1 can be normal	
				Work.	
				Note: The read and write operations to CIS0, CIS1, CSA are independent of IOR1, that is, even if	
				IOR1=0, you can also access the contents of these three storage spaces.	
0X04 Int E	nable IENM RW [0],	interrupt enable	signal		1'b0
				0: Interrupts from the card cannot be sent to the SD host	
				1: Any function interrupt can be sent to the host	
		IENx RW [7:	I], interrupt e	nable for functionx.	7'b0
				IEN1=0, the interrupt from Fn1 will not be sent to the host.	
				IEN1=1, then allow the Fn1 interrupt to be sent to the host	
0X05 Int			RO	[0],RFU	1'b0
	Pending	YOU	RO	[7:1], the interrupt of functionx is pending.	7'b0
		\searrow	*	INT1=0, no Fn1 interrupt is pending	
		Y		INT1=1, Fn1 interrupt is pending.	
				Note: If IEN1 and IENM are not 1, the host will not receive the pending interrupt	
0X06 I/O A	bort ASx		WO [2:0], (cancel IO read or write, thereby releasing the bus.	3'b0
				To cancel the Fn1 operation, use CMD52 to write to 3'b1. The command is under SPI	
				not support.	
		RES	WO [3], so	ft reset signal	1'b0

				-	
				1: Reset the circuit of the SD clock domain, this bit is automatically cleared after being set, no dedicated	
				The door is cleared. This reset signal will not affect the protocol selection of the current card (SD or SPI	
				mode) without affecting CD Disable. Only use CMD52 to operate.	
			RO	RFU	4'b0
0X07 Bus		Bus	RW [1:0], c	ata line width	2'b00
	Interface	Width		2'b00: 1bit data line mode	
	control			2'b10: 4bit data line mode	
				Reset or power on, it will become 2'b00	
			RO	[4:2],RFU	3'b000
		ECSI RW [5],	enable contir	uous SPI interrupt.	1'b0
				If SCSI is 1, this register is used to allow SDIO card in SPI mode	
				Next, an interrupt is given at any time, and the state of the CS line does not need to be concerned at this time.	
		SCSI	RO [6], su	ports continuous SPI interrupt.	1'b1
				If it is 1, it means that the SDIO card supports SPI mode, at any time given	
			\sum	interrupt without caring about the state of CS.	
		N	Y	When progtam reg[2] is 1, this register is set.	
		CD	RW [7], co	nect or disconnect the 10-90K pull-up resistor on CD/DAT[3] (pin1).	1'b0
		Disabl		0: Connect a pull-up resistor	
		and		1: Disconnect the pull-up resistor	
				After power-on, this register is cleared to 0, that is, a pull-up resistor is connected. The state of this register is not	
				It will be affected by reset command in SD protocol.	
0X08 Card		SDC	RO [0], sup	port to execute CMD52 command during data transmission. 1'b1 not supported in SPI mode	

Capability			the register.	
			When progtam reg[3] is 1, this register is 1	
	SMB	RO	[1], means that the SDIO card supports the Block transfer mode required by CMD53.	1'b1
			When program_reg[4] is 1, this register is 1	
	SRW	RO	[2], indicating that SDIO supports read wait - Read Wait Control (RWC) operation.	1'b1
			When program_reg[5] is 1, this register is 1	
	SBS	RO	[3] , means the SDIO card supports suspend/resume.	1'b1
			If 0, the register is not supported (0x0C-0x0F)	
			If 1, all functions except Fn0 will be suspended according to SD host requirements	
			or restore	
			When program_reg[6] is 1, this register is 1	
	S4MI	RO	[4], indicating that the SDIO card supports data transfer to the host in 4bit multi-block data transmission mode	1'b1
			Generate an interrupt.	
		\frown	0: Does not support interrupts between block transfers, in this case, as long as	
			IENx=1, SDIO can still initiate an interrupt to the host in other interrupt cycles	
	N	×	1: Support generating interrupts between block transfers	
	Y		When program_reg[7] is 1, this register is 1	
	E4MI RW [5],	interrupt enat	Ne.	1'b0
			In the 4bit multi-block mode, it is allowed to generate data to the host during two block data transmissions.	
			Student Interruption.	
			0: not allowed	
			1: allow	

				Power-on reset or reset command will clear this register to 0	
		LSC	RO	[6],	1'b0
				0: means the SDIO card is a full speed device	
				1: Indicates that the SDIO card is a low-speed device	
				When program_reg[8] is 1, this register is 1	
		4BLS	RO	[7],	1'b1
				0: Indicates that SDIO is a low-speed mode device or does not support 4bit mode	
				1: Indicates that SDIO is a low-speed mode device and supports 4bit mode	
				When program_reg[9] is 1, this register is 1	
0X09-	Common CIS pointe	r RO		[23:0], point to the start address pointer of SDIO card common CIS (CIS0). CIS0 package	24'h00
0X0B				Contains information about the entire card. Its access space is: 0x001000-0x017FFF.	1000
				Pointers are stored in little-endian format (LSB).	
0X0C Bus		BS	RO	[0] , bus status.	1'b0
	Suspend			0: The currently selected function does not use the data bus	
		Y		1: The currently selected function (use FSx or use the function in the IO command	
		Y		number) is executing a command that will transmit data on the data line	
				This register is used by the host to determine which function is currently using the data bus	
				Wire.	
				If the SDIO card does not support the suspend resume function, this register is 0.	
				Any operation to access CIA cannot be suspended, this register is always 1, even if BR sends	
				register is 1.	

				In SPI mode, it is read-only and is 0.	
		BR	RW Bus rel	ease request/status. This register is used to request the selected function (with	4'h0
				FSx or CMD53 general function number is selected) to release the data bus and hang up	
				related operations.	
				If the host sets this register to 1, the selected function will temporarily stop at the	
				According to the data transmission on the line, and suspend the command of the current data operation. BR register save	
				Hold at 1 until the release process is complete. Once the function is suspended, the device clears the	
				Zero BS, BR to inform the host. The host can monitor the status of pending requests by reading the BR	
				Execution status, if BR is 1, the pending request is still executing. The host can actively	
				Write 0 to BR to cancel the pending request in progress.	
				In SPI mode, it is read-only and is 0.	
			RO	[7:2],RFU	6'b0
0X0D Functi	on	FSx	RW [3:0], u	sed to select function[0-7] in suspend/resume operation. two ways	4'b0
	Select			Write FSx:	
				Perform IO write operation to CCCR	
	•	\sim		A newly initiated IO command will cause FSx to be set to the function in the command	
		Y		numberÿ	
				If the function is currently suspended, write the function's	
				number, when reading FSx, the data transfer operation of this function will be resumed	
				do. The returned value will be the number of the currently selected function.	
				Note: When reading FSx, if BS=0, the value of FSx is undefined.	

				4'b0000ÿ Transaction of function 0 (CIA)	
				4'b0001-4'b0111ÿ Transaction to functions 1-7	
				4'b1000ÿ Transaction of memory in combo card	
				4'b1001-4'b1111ÿ Not defined, reserved for future use	
			RO	[3:1],RFU	3'b000
		DF	RO [7], re	store data flag. Writing the function number to FSx will restore the selected	1'b0
				Data transfer in function. Once data transfer resumes, the DF register will indicate	
				Whether there is more data to transfer.	
				0: No more data to transfer after function is resumed.	
				1: There is more data to transfer after function is resumed.	
				DF is used to control the interrupt period in 4bit mode. If it is 1, in function	
				After recovery, there is more data to be transferred, in which case the interrupt cycle is canceled.	
			\frown	If 0, function resumes after data transfer ends (in case of busy),	
				In this case, after recovery, there is no data transfer, so the host can	
			Y	The start of an interrupt cycle is detected after function resumes.	
0X0E Exec	t Flags EXx	× .	RO [7:0],	execution flag bit. The host determines all functions through these bits[7-	8:00 a.m
				1] The status of the executed command. These registers can inform the host that a function is	
				The command is executed, so no new commands can be issued for this function.	
				In SPI mode, it is read-only and is 0.	
0X0F Read	dy	RFx	RO [7:0],	read flag bits. The host can know the function[7-	8:00 a.m
	Flags			1] Read and write busy status. If a function is executing a write transaction, the corresponding	

				Clearing the RFx bit indicates that the function is busy and not ready to receive more data	
				according to. If a function is performing a read operation, the corresponding RFx bit is cleared	
				If it is zero, it indicates that the read data is invalid, and if it is 1, it indicates that the read data can be transmitted.	
				SPI is invalid, read-only, and is 0	
0X10-	FN0 Block Size		RW [15:0],	Block size corresponding to Fn0 during transmission. maximum	16:00
0X11				2048Byte, minimum 1Byte. The storage method is small segment format (LSB)	
0X12 Powe	r	SMPC RO [0]	, supports ho	st power control.	1'b1
	Control			0: The total SDIO current is less than 200mA, even if all functions are valid	
				(IOEx=1). EMPC, SPS, EPS are all 0.	
				1: The total current of SDIO can exceed 200mA. EMPC, SPS, EPS are valid.	
		EMPC RO [1]	, host power	control enable.	1'b0
				0: The total current of SDIO card is less than 200mA. SDIO card automatic switching function(s)	
				Go to low current mode or not allow some functions to be enabled, and it ignores the EPS	
				value, so that the current of the card is less than or equal to 200mA.	
				1: The total current of SDIO card can exceed 200mA, and SPS and EPS are valid. the host	
		N	7	Use SPS, EPS and IOEx in FBR according to its ability to provide current	
		Y		Capable of higher current function.	
			RO	[7:2],RFU	
0X13 High		SHS	RO	[0], means the SDIO card supports high speed	1'b1
	Speed			0: does not support high speed	
				1: Support high speed	

		EHS	RW[1], hi	gh speed enable	1'b0
				0: SDIO card works at the default speed, the binbest frequency is 25MHZ	
				0. ODIO card works at the deladit speed, the ingrest nequency is zowinz	
				1: SDIO card can work in high speed mode, the highest frequency is 50MHZ	
			RO	[7-2]ÿRFU	
0X14-	RFU		RO	Reserved for Future Use (RFU)	8'b0
0XEF					
0XF0-	Reserved for		RO	Area Reserved for Vendor Unique Registers	8'b0
0XFF	Vendors			•	
0X100 I/O	Device Interface		RO	[3:0], flags what kind of device Fn1 is.	4'h7
	Code			Programmable by Register CIA[15:12].	
				4'h0 No SDIO standard interface supported by this function	
				A	
				4'h1 This function supports the SDIO Standard UART	
				4 h2 This function supports the SDIO Type-A for Bluetooth	
				standard interface	
				×	
			$\mathbf{>}$	4'h3 This function supports the SDIO Type-B for Bluetooth	
			×	standard interface	
				4'h4 This function supports the SDIO GPS standard	
				interface	
				4'h5 This function supports the SDIO Camera standard	
				interface	
				4'h6 This function supports the SDIO PHS standard	
				interface	

			4'h7 This function supports the SDIO WLAN interface	
			4'h8 This function supports the Embedded SDIO-ATA	
			standard interface	
	RFU	RO	[5:4],RFU	2'b00
	Function supports	RO	[6],	1'b0
	CSA		0: Fn1 does not support CSA	
			1: Fn1 support and CSA	
			Can be programmed through register CIA[16]	
	Function CSA	RW [7],		1'b0
	enable		0: Do not allow access to CSA	
			1: Allow access to CSA	
0X101 Exte	nded standard	RO	[7:0], extension of I/O Device Interface Code	8'b0
	I/O		can be programmed by register CIA[24:17]	
	device type code			
0X102 SPS		RO	[0], indicates whether Fn1 has power consumption selection	1'b0
			0: no power selection	
			1: There are two power consumption options, which can be selected through EPS	
			can be programmed by register CIA[25]	
	EPS	RW [1], po	wer selection	1'b0
			0: Fn1 works in high current mode	
			1: Fn1 works in low current mode	

		RO	[7ÿ2]ÿRFU	6'b0
0X103-		RO	RFU	0
0X108				
0X109-	Address pointer to	RO	[16:0], the CIS address pointer of Fn1, namely CIS1, instructs the host to access the CIS of Fn1	17'h02
0X10B	function CIS1		initial address. The storage method is LSB segment format.	000
		RO	[23ÿ17],RFU	7'b0
0X10C	Address pointer to	RW [23:0],	pointing to the 24bit address pointer of CSA, the host accesses through the CSA access window	24'h00
	function CSA		After asking CSA, the pointer will automatically increase by 1.	0000
0X10E			Addresses are stored in small segment format (LSB)	
0X10F Data	access window	RW [7:0], ı	ead and write window to CSA. When writing to this address, the corresponding data will be	8'b00
	to CSA		Write the address indicated by the CSA 24bit address pointer through this window.	
			During read operation, read data from the address indicated by the 24bit CSA address pointer, through	
			This window is sent to the host.	
0X110-	Function1 IO Block	RW [15:0],	16bit register, used to set the IO block size. biggest	16'b0
0X111	Size		The block size is 2048Byte, the minimum is 1.	
	•		The data is stored in little andian mode (LSB)	
0X100	CISO	RO The hos	t accesses the CIS address space of Fn0, that is, the host accesses through this address space segment	
0-			CIS0. This SDIO card supports up to 17 bytes of CIS0	
0X101				
0				
0X200	CIS1	The RO hos	t accesses the CIS address space of Fn1, that is, the host accesses through this address space segment	
0-			CIS1. This SDIO card supports CIS1 byte data of 55~308.	

0X213			
3			
RFU		RFU	

11.4.3 SDIO Fn1 register

The Fn1 register is the address space allocated to function1 by the SDIO protocol, and its address range is: 0x00000~0x1FFFF, a total of 128K.

Since the AHB bus address width inside the chip is 32 bits, SDIO cannot use 17-bit addresses to directly access the inside of the chip, so in

In the design, an address mapping needs to be completed. The specific mapping relationship is as follows: (FN1 access space)

SDIO host access window	Corresponding to the actual physical address space	actual physical address space content
0X0000 ~ 0X00FF	0X0000 ~ 0X00FF	SDIO module internal register address space.
0X1000 ~ 0X1FFF	Configurable	CIS0 physical space, the specific physical space is configured by firmware.
0X2000 ~ 0X2FFF	Configurable	CIS1 physical space, the specific physical space is configured by firmware.
0X4000 ~ 0X4FFF	Configurable	Downlink and uplink cmd physical space, specific physical space
		The address is configured by firmware.
0X5000 ~ 0X5FFF	variable	Send buffer address space, according to sdio_txbd
0X15000 ~ 0X15FFF		instructions in .
0X6000 ~ 0X7FFF	variable	Receive buffer address space, according to sdio_rxbd
0X16000 ~ 0X17FFF		instructions in .
0X8000 ~ 0X9FFF	0X0E000000 ~ 0X0E002000	AHB bus config address space.
0XA000 ~ 0XBFFF	0X0F000000 ~ 0X0F002000	AHB bus APB address space.

Table 91 SDIO Fn1 address mapping relationship

Drivers should avoid accessing space beyond the above range, as doing so may bring unexpected results.

Among them, the first address space register is inside SDIO, and can only be accessed by SDIO HOST; other address space accesses will be based on

The description is mapped to other spaces inside the chip.

This section only introduces the registers in the SDIO 0x0000 ~ 0x00FF address space, which are controlled by the SDIO host through the CMD52 command

For direct access, the offset address is the access address, and the function number is 1.

offset address name	2	Bit width acc	ess descript	on	reset value
0X00~0X03			RO	RSV	
0X04		[7:1]	RO	RSV	7'b0
	int_read_data	[0]	RW Uplink	data interruption. Active high, write 1 to clear.	1'b0
				When reading 0x1C, it will also be automatically cleared to 0.	
0X05		[7:1]	RO	RSV	7'b0
	int_mask	[0]	RW corres	ponds to the mask enable signal of int_src. 1 to mask the corresponding interrupt. 1	d0
0X06		[7:2]	RO	RSV	6'b0
	wlan_awake_stts [0]		RO current	WLAN status:	1'b1
				1 is ACTIVE; 0 is SLEEP.	
0X1C	dat_len0	[6:0]	RO uplink	data length is 7 bits higher. A total of 12 bits, the lower 5 bits are at 0x1D	7'b0
				middle.	
	dat_vld	[7]	RO	1'b1	1'b1

Table 92 Some registers of SDIO Fn1 (accessed by HOST)

0X1D	dat_len1	[7:3]	The length	of RO upstream data is 5 bits lower. A total of 12 bits, the high 7 bits are at 0x1C	5'b0
				middle.	
		[2:0]	RO	RSV	3'b0
0X1E			RO	RSV	
0X1F		[7:2]	RO	RSV	6'b0
	down_cmdbuf_vl	[1]	RO Downli	nk command buffer is available, 1 is valid.	1'b1
	d				
	txbuf_vld	[0]	RO downli	nk data buffer is available. 1 is active, indicating that there is a send	1'b0
				bufferÿ	
0X20	wlan_wake_en	[0]	RW Enable	chip wake-up issued by SDIO in SLEEP state, high effective.	1'b0
				After the chip wakes up, this bit will be automatically cleared to 0 by hardware.	
0X21		[7:1]	RO	RSV	7'b0
	fn1_rst	[0]	RW soft re	set, 1 is valid.	1'b0
				After the software writes 1, (that is, the chip wlan part of the circuit) is reset, write 0	
				After that, function1 reset is released.	
0X22		[7:1]	RO	RSV	7'b0
	fn1_recov	[0]	RW Error r	ecovery enable, 1 is valid, after the command response ends, the	1'b0
				Bit is automatically cleared to 0.	
				This function is used to complete the same function as fn0/fn1 io abort.	
				When cmd is abnormal or the command is terminated early, this register can be set to	
				1, to complete the io abort operation.	
				Due to the limitation of io abort command in some bus driver versions	

		(that is, the register access address space is limited), and the user driver is not allowed to use	
		At this time, writing 1 to this register can replace the io abort operation, and	
		produces the same effect.	

11.4.3.1 SDIO AHB Interface Slave Registers

The following registers are used when SDIO slave device is initialized.

When transmitting data, it needs to be used in conjunction with the wrapper controller. For the part of the Wrapper controller, refer to the HSPI part of the documentation.

offset address na	me	Bit width acc	ess descriptior		reset value
0X0000			RO	Rsv	
0X0004					
0X0008	CIS function0	[31:0] RW		The offset address of CIS0 stored in the internal memory of the system.	32'b0
	address			CIS0 actual storage start address = 0x01000 (read command start address	
				address) + the offset address	
0X000C	CIS function1	[31:0] RW		The offset address of CIS1 stored in the internal memory of the system.	32'b0
	address			CIS1 actual storage start address = 0x02000 (read command start address	
				address) + the offset address	
0X0010	CSA address	[31:0] When F	W firmware is ir	itialized, set the cheap address to access CSA, its principle is the same as	32'b0
				CIS settings are the same. CSA is not supported in this design.	
0X0014	Read address [31:0] RW	is used to set th	ne starting addre	ss for DMA to read data from memory. With 32'b0	

Table 93 SDIO AHB bus registers

				Combining the Data Port register can realize the internal memory of the system	
				Read operation (that is, the access address is 0x00+ Read address). in this	
				In the design, this method is not used, so the default is 0	
0X0018	Write address [31:0] RV	V is used to set	the starting add	ress for DMA to write data to memory. Cooperate	32'b0
				The Data Port register can realize writing to the internal memory of the system	
				operation (that is, the access address is 0x00+ write address). in this setting	
				In the calculation, this method is not used, so the default is 0	
0X001C	AHB Transfers	[20:0] RW		The SDIO device informs the host that in the read data operation to be initiated, it needs	32'b0
	count			How many bytes of data to read.	
				[23:21]RFU	
0X001F		RO	-	rsv	
0X0020	SDIO Transfer	[20:0] RO In ;	a data transmiss	ion, the bytes sent from the host to the SDIO device	32'b0
	count			number. When the data transmission is completed, the internal high-speed device through this register	
				The number of bytes sent.	
				[31:21]RFU	
0X0024	CIA register	-	RW	[3:0]: CCCR Revision. Default is 4'h2	32'h06017
				4'h0 CCCR/FBR Version 1.00	232
				4'h1 CCCR/FBR Version 1.10	
				4'h2 CCCR/FBR Version 1.20	
				[7:4] SDIO Revision. Default is 4'h3	
				4'h0 SDIO Specification 1.00	

		4'h1 SDIO Version 1.10	
		4'h2 SDIO Version 1.20	
		4'h3 SDIO Version 2.0	
		[11:8] SD Revision. Default is 4'h2	
		4'h0 SD Physical Specification 1.01	
		4'h1 SD Physical -Spec-1.10	
		4'h2 SD Physical Spec 2.0	
		[15:12] IO-Device Code. The default is 4'h7, that is, this product is	
		Wi-Fi devices.	
		[16]csa_support, the default is 1.	
		0: does not support CSA	
		1: Support CSA	
		During initialization, the firmware needs to configure this register to be 0.	
		[24:17],Extended IO-device code	
		The default is 8'b0.	
		Extension of the standard IO-device code of Fn1.	
		[25], SPS, the default is 1, that is, Fn1 supports high power consumption	
		0: not supported	

-				1
			1: support	
			[26], SHS, the default is 1, supporting high speed	
			0: not supported	
			1: support	
			[31:27]:RFU	
0X0028	Program	RW	[0], function ready. hc8051 is required to complete SD initialization	16'h 02fc
	Register		After the desired Fn1 register is configured, set this register to send to the SD host	
			Indicates that Fn1 is ready to work. Default is 0	
			0:Fn1 not ready	
			1ÿFn1 ready	
			[1], fun1 read data ready. Fn1 is ready to send to the SD host	
			When sending data, set this register. After the host responds to the read interrupt, the read	
			Interrupt source register (Interrupt Identification), the bit from	
			Automatically reset. The default is 0.	
			0: no data sent to the host	
			1: There is data sent to the host.	
			[2], SCSI. Supports continuous SPI interrupts. The default is 1.	
			0: not supported	
			1: support	
			[3], SDC. Indicates that the SDIO card supports execution while data is being transmitted	
			CMD52 command. Default is 1	
			0: not supported	

		1: support	
		[4], SMB. SDIO card supports block transmission of CMD53. default	
		is 1.	
		0: not supported	
		1: support	
		[5], SRW. Indicates that the SDIO card supports read waiting. The default is 1.	
		0: not supported	
		1: support	
		[6], SBS. Indicates that the SDIO card supports suspend/resume. Default is 1	
		0: not supported	
		1: support	
		[7], S4MI. Indicates that the SDIO card supports data transmission in 4bit multi-block	
		An interrupt is generated on output. The default is 1.	
		0: not supported	
		1: support	
		[8], LSC. Indicates that the SDIO card is a low-speed device. The default is 0.	
		0: full speed device	
		1: Low speed device	
		[9], 4BLS. Indicates that the SDIO card is a low-speed device, but supports	
		4bit data transmission. The default is 1.	
		0: not supported	
		1: support	

				[10], card ready. S	Signals belonging to the SD clock domain, power-on reset	
				After release, this	register automatically becomes 1, indicating that SDIO (Interface	
				points) are ready.	When the firmware detects this signal, it can configure the initial	
				Fn1 register requi	red for initialization. It is 0 at power-on reset.	
				[15:11], RFU. Def	ault is 0	
0X0034	OCR register	-	RW [23:0], wor	king status register,	internally programmable, mainly used to communicate with	32'h00ff80
				Host operating vo	ltage range matches. Default: 24'hff8000.	00
				Register Bit Supp	ort Voltage Range	
				0-3	Reserved	
				4	Reserved	
				5	Reserved	
				6	Reserved	
				7	Reserved	
				8	2.0-2.1	
				9	2.1-2.2	
				10	2.2-2.3	
				11	2.3-2.4	
				12	2.4-2.5	
				13	2.5-2.6	
				14	2.6-2.7	
				15	2.7-2.8	

	1				
				16 2.8-2.9	
				17 2.9-3.0	
				18 3.0-3.1	
				19 3.1-3.2	
				20 3.2-3.3	
				21 3.3-3.4	
				22 3.4-3.5	
				23 3.5-3.6	
				[31:24]ÿ8 [·] b0	
0X0038		RW	-	rsv	32'h0
0X003C	CD_State	-	RW	[0] indicates the state of the pull-up resistor on the SD dat[3] data line.	32'b0
	Register			0: pull-up is valid	
				1: pull-up invalid	
				All on-chip AHB buses can access this register.	
				Note: The result of AHB's write operation to this register will indirectly modify	
				CCCR7[7] CD value.	
				[31:1],RFU	
0X0040	Fn1 Ena	-	RW	[0], indicates whether Fn1 is enabled or not.	32'b0
	Register			0: disabled	
				1: enable	

		All on-chip AHB buses can access this register.	
		Note: The result of AHB's write operation to this register will indirectly modify	
		CCCR1[1] IOE1 value.	
		[31:1],RFU	

12 HSPI/SDIO Wrapper Controller

12.1 Function overview

Cooperate with the interface controller (SDIO and HSPI) to complete the DMA operation of data between the host and the internal cache of the chip. Including uplink and downlink data cache

The interactive control of software and hardware, the filling and release of sending and receiving buffers, the generation of uplink data interruption, etc.

Both SDIO and HSPI exchange data with the host computer through the wrapper controller, and the control commands and processes of the two are the same. to describe

For the convenience of description, some registers are prefixed with SDIO. The corresponding register operations are also applicable to HSPI

It should be noted that for the prefix SDIO_TX related registers, it controls the device to receive data, and for SDIO_RX related registers,

Control is the device sending data.

For the cmd field that appears in the register, it is only distinguished from the data frame in terms of description, and it does not mean that the command channel can only transmit commands, or it can

Used to transfer data. The difference between commands and data here is that the command channel has only one buffer area, and the buffer length is generally less than 256

bytes, while the data channel has multiple cache areas, each of which has a length of more than 1K. Multiple caches form a linked list structure, and the specific length

Configured by software. Due to the linked list cache structure of the data frame, the transmission rate will be faster than the command channel.

12.2 Main Features

ÿ Support word-aligned data movement

ÿ Support DMA function

ÿ Support linked list structure management

ÿ Support interrupt generation

ÿ Can receive up to 4096 bytes of data

12.3 Functional description

12.3.1 Uplink data receiving function

The upstream direction refers to the direction in which the master device (SDIO or HSPI) sends data to the slave device (W800).

When the master device sends data to the slave device, after the SDIO or HSPI module receives the data, it will link the data to the interface through WRAPPER.

Receive BD, and generate an interrupt to notify the application software to process the data.

Receive BD descriptor:

sdio_rxbd

31

VId[31]	RSV						
Sdio_rx_info_si too[31:26]	Frm_len[25:12]	Rxbuf0_offset[11:0]	word1				
	Sdio_rxbuf0_addr[31:0]						
Sdio_rxbuf1_addr[31:0]							
	Sdio_rxbuf2_addr[31:0]						
	Next_sdio_rxbd_addr[31:0]						

Note: 1.

vld, 1 is valid, indicating that the current descriptor points to a valid received frame. 2.

rxbuf0_offset: byte address, word alignment, indicating the offset address of the word where the first valid byte of the 802.3 frame is located relative to sdio_rxbuf0. 3.sdio_rxbuf0_addr: byte address, word alignment, buf base address of the first fragment of the upstream data frame. 4. sdio_rxbuf1_addr: byte address, word alignment, buf base address of the second fragment of the uplink data frame. 5.sdio_rxbuf2_addr: byte address, word alignment, buf base address of the third fragment of the uplink data frame. 6.next_sdio_rxbuf2_addr: byte address, word alignment, base address of the next sdio_rxbd. 7. frm_len, byte length, indicates the length of uplink data, excluding sdio_rx_info.

8. Sdio_rx_info_size, byte length, indicates the number of sdio_rx_info bytes, which must be an integer multiple of 4 bytes. Note: The longest received frame is 4096, occupying up to three fragments. Rxbuf0_offset is only valid for the first fragment of the stored frame (that is, the fragment in sdio_rxbuf0), and for the remaining two fragments, the data is stored sequentially from the base address. The hardware should determine whether the frame exists in multiple fragments according to the length of the uplink data and the fixed size of each buf of 1600 bytes.

Figure 26 SDIO receive BD descriptor

When the SDIO module or HSPI module of W800 detects that the receiving enable is valid, it reads RXBD and judges the VId flag.

12.3.2 Downlink Data Migration Function

When W800 has data to send to the master device, the software prepares the sending description first, and then notifies WRAPPER to send the data

Relocation, WRAPPER notifies the master device to read the device to be sent through SDIO or HSPI interrupt signal, when the data transmission is completed,

WRAPPER generates a transmit completion interrupt notification routine.

Send BD descriptor:

Note: 1.

vld, 1 is valid, indicating that the current descriptor points to an available send buffer.

2. Sdio_txbuf_addr, byte address, must be word-aligned. Indicates that this descriptor points to the base address where the sent data is stored. This address is offset relative to the base address of each sdio_txbuf to ensure that the base address of the sdio_txbuf is not exceeded when the firmware adds the LLC up at the beginning of the frame. 3.next_sdio_txbd_addr, byte address, word alignment. The base address of the next sdio_txbd.

Figure 27 SDIO sends BD descriptor

12.4 Register Description

12.4.1 Register List

Table 94 WRAPPER controller registers

offset	name	abbreviation	access describe		reset value
address					
0X0000 WR	APPER interrupt status register INT_STTS		RW comn	nand or data frame interrupt status	0X0000

020004 10/154			Whathar th	e PW command or data frame interrunt is masked (X0000
0X0004 WRA	PPER interrupt configuration register IN1_MASK				×0000
	WRAPPER Uplink command ready send		RW whethe	r the uplink command is ready	0X0000
0X0008		UP_CMD_AVAIL			
	memory				
	WRAPPER downlink command buf is	DOWN_CMD_BUF_A	RW Wheth	r the downlink command buf is ready	0X0000
0X000c					
	thread register	VAIL			
		SDIO TX BD LINK E	RW indica	es whether the sdio txbd linked list descriptor is	0X0001
0X0010 SDIC	_TX link enable register				
		Ν		efficient	
			PW The ad	trace pointed to by the current edia, typed pages to be	0X0000
0X0014 SDIC	_TX link address register SDIO_TX_BD_ADDR		NW The au	areas pointed to by the current salo_toba needs to be	
				For word alignment, configuration is required during initialization	
			PW SDIO	roomit frame englie	02000
0X0018 SDIC	D_TX enable register	SDIO_TX_EN	RW SDIO		0,0000
0X001c SDIC	_TX status register	SDIO_TX_STTS	RO	SDIO send status	0X0000
		C			
020020 2010	PX link onable register	SDIO_RX_BD_LINK_E	RW indica	es whether the sdio_rxbd linked list descriptor	0X0001
070020 3010		Ν		efficient	
			RW The ad	dress pointed to by the current sdio_rxbd needs to be	0X0000
0X0024 SDIC	D_RX link address register SDIO_RX_BD_ADDR			For word alignment, configuration is required during initialization	
0X0028 SDIC	_RX enable register	SDIO_RX_EN	RW SDIO	receive frame enable	0X0000
0Y000- 0DIC			RO	SDIO receive status	0X0000
UXUU2C SDIC					
	WRAPPER CMD BUF base address	CMD_BUF_BASE_AD	RW downl	nk cmd buf base address	0X0000
0X0030					
	register				
	WRAPPER CMD BUF SIZE		RW Cmd b	uf byte size	0X0064
0X0034		CMD_BUF_SIZE			
	register				

12.4.2 WRAPPER INTERRUPT STATUS REGISTER

Table 95 WRAPPER interrupt status register

bit	access	Instructions	reset value
[31: 4] RO		reserve	
[3]	RW	int_down_cmd down cmd frame complete interrupt. Write 1 to clear 0.	1'b0
[2]	RW	int_up_cmd Up cmd frame word complete interrupt. Write 1 to clear 0.	1'b0
[1]	RW	int_sdio_txfrm Downstream data frame complete interrupt. Write 1 to clear 0.	1'b0
[0]	RW	int_sdio_rxfrm Upstream data frame complete interrupt. Write 1 to clear 0.	1'b0

12.4.3 WRAPPER INTERRUPT CONFIGURATION REGISTER

Table 96 WRAPPER interrupt configuration register

bit	access	Instructions	reset value
[31: 4] RO		reserve	
[3]	RW	int_mask_down_cmd Down cmd frame complete interrupt mask register. 1 is shielding, the same below.	1'b0
[2]	RW	int_mask_up_cmd Up cmd frame complete interrupt mask register.	1'b0
[1]	RW	int_mask_sdio_txfrm Downstream data frame complete interrupt mask register.	1'b0
[0]	RW	int_mask_sdio_rxfrm Upstream data frame complete interrupt mask register.	1'b0

12.4.4 WRAPPER upstream command ready register

Table 97 WRAPPER uplink command ready register

bit access Instructions reset value	bit
-------------------------------------	-----

[31: 1]		RO	reserve	
[0]		RW	Firmware sets this bit to 1 when there is an upstream cmd frame. When the upstream cmd transmission is complete, the hard	1'b0
			The software automatically clears it to 0 and generates an int_up_cmd interrupt.	

12.4.5 WRAPPER downlink command buf ready register

Table 98 WRAPPER downlink command buf ready register

bit	access	Instructions	reset value
[31: 1] RO		reserve	
101	RW	After sending the downlink cmd, the hardware will clear this bit to 0 and generate an interrupt at the same time. When the firmware processing is complete this next command	1'b0
		After command, set this bit to 1.	

12.4.6 SDIO TX link enable register

Table 99 SDIO TA IIIK enable rediste	Table 99	SDIO	TX link	enable	reaister
--------------------------------------	----------	------	---------	--------	----------

bit	access	Instructions	reset value
[31: 1] RO		reserve	
	J.	sdio_txbd link enable, active high. If this bit is valid, the hardware is processing an sdio_txbd descriptor and directly processes it	1'b1
[0]	RW	The next descriptor pointed to by next_sdio_txbd_addr. If this bit is invalid, the hardware is processing a	
		After sdio_txbd, it will stop immediately.	
		The same applies to HSPI.	

12.4.7 SDIO TX link address register

Table 100 SDIO TX link address register

bit	access	Instructions	reset value
[31: 0] RW		The current sdio_txbd byte address, the software needs to strictly ensure the word alignment, the same below.	32'h0
		Initially, the firmware needs to configure this register. After the hardware completes a sending buf each time, it will set the sdio_txbd	
		The next_sdio_txbd_addr in the descriptor is updated to this register.	\bigcirc
		The same applies to HSPI.	

12.4.8 SDIO TX Enable Register

Table 101 SDIO TX enable register

bit	access	Instructions	reset value
[31: 1] RO		reserve	
		SDIO transmit frame enable, active high.	1'60
		After the firmware completes the construction of each descriptor sdio_txbd descriptor, set this bit to 1 to notify the SDIO module	
101	RW	A new send descriptor exists. The SDIO module detects that this bit is valid, and starts to read the current	
		sdio_txbd, and complete the sending frame process.	
	$\langle h \rangle$	Hardware clears this register to 0 automatically.	
		The same applies to HSPI.	

12.4.9 SDIO TX Status Register

Table 102 SDIO TX Status Register

bit access Instructions reset value	
-------------------------------------	--

[31: 1] RO		reserve	
[0]	RW	SDIO send status.	1'b0
		0: SDIO has stopped sending process because no send descriptor is available	
		1: SDIO is in the process of sending	
		The same applies to HSPI.	

12.4.10SDIO RX Link Enable Register

Table 103 SDIO RX Link Enable Register

bit	access	Instructions	reset value
[31: 1] RO		reserve	
		sdio_rxbd link enable, active high.	1'b1
		If this bit is valid, the hardware is processing an sdio_rxbd descriptor and directly processes it	
[0]	RW	The next descriptor pointed to by next_sdio_rxbd_addr. If this bit is invalid, the hardware is processing a	
		After sdio_rxbd, it will stop immediately.	
		The same applies to HSPI.	

12.4.11 SDIO RX link address register

Table 104 SDIO RX link address register

bit	access	Instructions	reset value
		Current sdio_rxbd byte address.	32'h0
[31: 0] RW		Initially, the firmware needs to configure this register. After the hardware completes a sending buf each time, it will set the sdio_rxbd	
		The next_sdio_rxbd_addr in the descriptor is updated to this register.	

	The same applies to hom.	

12.4.12 SDIO RX Enable Register

Table 105 SDIO RX enable register

bit	access	Instructions	reset value	
[31: 1] RO		reserve	\bigcirc	
[0]	RW	SDIO receive frame enable, active high.	1'b0	
		After the firmware completes the construction of each descriptor sdio_rxbd descriptor, set this bit to 1 to notify the SDIO module		
		PW	A new receive descriptor exists. The SDIO module detects that this bit is valid, and starts to read the current	
		sdio_txbd, and complete the process of receiving frames.		
		Hardware clears this register to 0 automatically.		
		The same applies to HSPI.		

12.4.13 SDIO RX Status Register

Table 106 SDIO RX Status Register

bit	access	Instructions	reset value
[31: 1] RO		reserve	
[0]	RW	SDIO receive status.	1'b0
		0: SDIO has stopped receiving process because there is no valid uplink descriptor and uplink command	
		1: SDIO is in the process of receiving	
		The same applies to HSPI.	

12.4.14 WRAPPER CMD BUF base address register

Table 107 WRAPPER CMD BUF base address register

bit	access	Instructions	reset value
[31: 0] RW		Downstream cmd buf base address.	32'h0
		The base address of upstream cmd buf is the base address plus cmd_buf_size.	

12.4.15 WRAPPER CMD BUF SIZE Register

Table 108 WRAPPER CMD BUF SIZE register

bit	access	Instructions	reset value
[31:12] RO		reserve	
[11: 0] RW		The byte size of cmd buf must be an integer multiple of 4 bytes.	12'd64

13 SDIO HOST device controller

13.1 Function overview

The SDIO HOST device controller provides a digital interface capable of accessing Secure Digital Input Output (SDIO) and MMC cards.

Able to access SDIO devices and SD card devices compatible with SDIO 2.0 protocol. The main interfaces are CK, CMD and 4 data lines.

13.2 Main Features

- ÿ Compatible with SD Card Specification 1.0/1.1/2.0(SDHC)
- ÿ Compatible with SDIO Memory Card Specification 1.1.0
- ÿ Compatible with MMC specification 2.0~4.2
- ÿ Configurable interface clock rate, support host rate 0~50MHz,
- ÿ Support standard MMC interface
- ÿ Support up to 1024 bytes Block
- ÿ Support soft reset function
- ÿ Automatic Command/Response CRC generation/verification;
- ÿ Automatic data CRC generation/verification;
- ÿ Configurable timeout detection;
- ÿ Support SPI, 1-bit SD and 4-bit SD modes
- ÿ Support DMA data transfer

13.3 Functional description

-

13.4 Register Description

13.4.1 Register List

Offset	register name	Name Bit Wid	th Attribute Des	cription		reset value
site						
0x00	mmc_ctrl	RSV	[15:11] RO			
			[10]	RW	SDIO read wait enable	1'b0
					'1' : enable SDIO read wait	
					'0' : Disable SDIO read wait	
			[9]	RW	SDIO interrupt enable	1'b0
					'1' : SDIO interrupt enable	
					'0' : SDIO interrupt disabled	
			[8]	RW	SDIO mode enable	1'b0
			\bigcirc	×	'1': SDIO	
		~			'0' : SD/MMC	
			[7]	RW	SD/MMC/SDIO interface data width	1'b0
		× 1			'1' : 4 bits	
					'0' : 1 bit	
			[6]	RW	SD/MMC/SDIO transfer mode	1'b1
					'1' : High-Speed Mode	
					'0' : Low-Speed Mode	
			[5:3]	RW	SDIO/MMC/SDIO port clock rate selection	3'b000
					Refer to Table 2	

			[2]	RW	SDIO/MMC/SDIO interface driver mode selection	1'b1
					'1' : open_DrainMode	
					ʻ0' :Push-Pull Mode	
			[1]	RW signal m	ode selection	1'b0
					'1' : Automatically select the transfer mode	
					'0' : Use mmc_port register to select	
			[0]	RW port mo	de selection	1'b1
					'1' : MMC mode	
					'0' :SPI mode	
0x04	mmc_io	RSV	RO	[15:10]		6'd0
			RW	[9]	SDIO cmd12/IO Abort flag	1'b0
				C	'1' : mark the current command as cmd12/IO Abort	
			0		'0' : flag current command is not cmd12/IO	
			\mathbf{O}		Abort	
		$\mathbf{>}$	RW	[8]	SDIO Command Properties	1'b0
					'1' : mark that there is a data block after the current command;	
					'0' : mark no data block and command response after current command	
					answer;	
			RW	[7]	Enable auto generate 8 null clock	1'b0
					after response/command or single	
					block data	
	1			1		1

	2				
				Automatically generate 8 after a response/command or a single chunk of data	
				null clock function	
				'1' : enable	
				'0' : off	
		RW	[6]	Enable auto receive response after	1'b0
				command	
				Automatically receive response function after command	
				'1' : enable	
				'0' : off	
		RW	[5]	8 nulls on SD/MMC/SDIO port clock line	1'b0
				clock generation	
			C	'1' : generate 8 null clocks	
			$\mathbf{\mathbf{Y}}$	'0' : Receive response/send command according to bit 3 setting	
		\vee	~		
	$\overline{\mathbf{N}}$	RW	[4]	Designed for CID and CSD reads. When sending CID or	1'b0
	~~			When the CSD command is issued, the SD/MMC/SDIO card device will be in	
				CMD reply online with 136bit CID or 11 CSD	
				data. When setting this bit to 1, CID or CSD	
				The data will be stored in [135:8] of the command buffer area	
				midde;	
		RW	[3]	Response/command selection when bit[5] is '0'	1'b0
				'1': Response received	

					'0': send command.	
			RW	[2]	Set up automatic 8 null clock/command/response transfers	1'b0
					Function	
					'1': Enable automatic 8 null clock/command/response transfer	
					'0': Disable automatic 8 null clock/command/response transmission	
					lose.	
					Generate 8 nulls according to bit 5 and bit3 settings	
					Clock, receive response or transmit command. when pass	
					After the input is completed, this bit is automatically cleared;	
			RW	[1]	Set data transfer direction	1'b0
				C	'1' : read data;.	
			\mathcal{O}		'0' : write data;	
		5	RW	[0]	Set up automatic data transfer	1'b0
		\mathbf{i}	Y		'1' : enable automatic data transfer	
		7			'0' : Disable automatic data transfer.	
					When the data transmission is completed, this bit will be automatically cleared;	
0x08	mmc_bytecntl		RW	[15:0] Data Tra	nsfer Byte Count Register	16'h0200
0x0C	mmc_tr_blockcnt		RO	[15:0] For mult	-block transfer, completed block counter 16'h0000	
0x10	mmc_crcctl		RW	[7]	SD/MMC/SDIO port CMD Line CRC	1'b0
					circuit enable.	
					SD/MMC/SDIO port CMD line CRC function	

	1					
					can	
					'1': enable.	
					'0': off.	
			RW	[6]	SD/MMC/SDIO port data line CRC function	1'b0
					'1': enable.	
					'0': off.	
			RW	[5] Enable au	tomatic CRC check crc_status	1'b0
					'1': enable, when crc_status ⊨3'b010,	
					A crc status interrupt will be generated, and the write data transfer will be	
					The stop command was interrupted and mmc_io[0] or	
					mmc_io_mbctl[2:0] will be cleared;	
					0: off;	
			RW	[4]	Read multi-block function before response	1'b0
			$\mathbf{\nabla}$		'1': enable.	
		$\langle \rangle$	Y		'0' : off	
		1	RW	[3:2]	DAT CRC selection.	1'b0
					DAT CRC selection	
					Refer to Table 4	
			RO	[1]	CMD CRC error.	1'b0
			RO	[0]	DAT CRC error	1'b0
0x14	cmd_crc	RSV	RO	[7]	RSV	1'b0
			RO	[6:0]	CMD CRC register value	7'd0

0x18	dot ool		RO	[7:0]	The DAT CRC low register value	ТНАТ
	ual_CCI	·		[7.0]		
0x1C	dat_crch		RO	[7:0]	The DAT CRC high register value	THAT
0x20	mm_port		RW	[7]	SD/MMC/SDIO port clock line signal.	1'b0
			RW	[6]	SD/MMC/SDIO port CMD line signal	1'b1
			RW	[5]	SD/MMC/SDIO port data line signal	1'b1
			RW	[4]	Automatically check Ncr timeout function	1'b1
					1': Enable automatic Ncr timeout check.	
					'0' : turn off auto-check Ncr timeout	
			RW	[3:0]	Ncr timeout count value	4'hF
					(SD/MMC/SDIO clock count).	
0x24	mmc_int_mask RSV		RO	[15:9]		7'd0
			~	[8]	SDIO data line 1 interrupt mask	1'b0
			\mathcal{O}_{1}	Y	'1': no masking	
		5			'0': shielded	
		$\langle \rangle$	7	[7]	CRC status token error interrupt mask	1'b0
		7			'1': no masking	
					'0': shielded	
				[6] Command a	and response Ncr timeout interrupt mask	1'b0
					'1': no masking	
					'0': shielded	
				[5]	Multi-block timeout interrupt mask.	1'b0
					'1': no masking	

					'0': shielded	
				[4]	Multi-block transfer complete interrupt mask.	1'b0
					'1': no masking	
					'0': shielded	
				[3] Command	CRC error interrupt mask	1'b0
					'1': no masking	
					'0': shielded	
				[2]	Data CRC Error Interrupt Mask	1'b0
					'1': no masking	
					'0': shielded	
				[1] Data transf	er complete interrupt mask	1'b0
				C	'1': no masking	
			\mathcal{O}		'0': shielded	
		~		[0] Command	transfer complete interrupt mask	1'b0
			×		'1': no masking	
		1			'0': shielded	
0x28	clr_mmc_int	RSV	RO	[15:9]		7'd0
			RW	[8]	W: Clear SDIO data line 1 interrupt	1'b0
					R: SDIO data line 1 interrupt status	
			RW	[7]	W: Clear CRC status token error interrupt	1'b0
					R: CRC status token error interrupt status;	

					When this bit is 1, judge mmc_sig[6:4]	
			RW	[6] W: Clear co	mmand and respond to Ncr timeout interrupt;	1'b0
					R: command and response Ncr timeout interrupt status;	
			RW	[5]	W: Clear multi-block timeout interrupt;.	1'b0
					R: multi-block timeout interrupt status;	
			RW	[4]	W: Clear multi-block transfer completion interrupt;.	1'b0
					R: Multi-block transmission complete interrupt status;	
			RW	[3]	W: clear command CRC error interrupt;.	1'b0
			\mathcal{O}	Y	R: command CRC error interrupt status;	
		5	RW	[2]	W: clear data CRC error interrupt;.	1'b0
			×		R: Data CRC error interrupt status;	
		7	RW	[1]	W: Clear data transfer complete interrupt;.	1'ЬО
					R: Data transmission complete interrupt status;	
			RW	[0]	W: Clear command transfer complete interrupt;.	1'b0
					R: command transmission complete interrupt status;	
0x2C	mmc_cardsel		RW	[7]	SD/MMC/SDIO controller enable	1'b0
					'1': enable	

					'0': off	
			RW	[6]	Enable SD/MMC/SDIO card device clock line	1'b1
					'1': enable	
					'0': off	
			RW	[5:0]	SD/MMC/SDIO Time Reference Factor	6'd0
					Use this register to establish a 1MHz clock;	
					1MHz=Fhclk/((mmc_cardsel[5:0]+1)*2)	
					• C) Y	
0x30	mmc_sig		RW	[7]	SD/MMC/SDIO port CMD line signal	1'b1
					When this register is read, the SDIO controller will	
					A clock pulse is generated on the clock line. and on the clock	
				C	The state of the CMD line will be stored to this register at the rising edge	
					device.	
			\bigcirc			
		$\langle \cdot \rangle$	Y			
		Y				
		1	RW	[6:4]	CRC status[2:0] When writing data CRC status	3'b111
					token time;	
			RW	[3]	SD/MMC/SDIO port DAT3 data signal. 1'b1	
			RW	[2]	SD/MMC/SDIO port DAT2 data signal.	1'b1
			RW	[1]	SD/MMC/SDIO port DAT1 data signal.	1'b1
			RW	[0]	SD/MMC/SDIO port DAT0 data signal.	1'b1
0x34	mmc_io_mbctl		RW	[7:6]	SD/MMC/SDIO NAC timeout range selection 2'b0	

					Reference Appendix 2 -Table 5.	
			RW	[5:4]	SD/MMC/SDIO Busy timeout scale	2'd1
					selection.	
					SD/MMC/SDIO device busy timeout range selection.	
					Reference Appendix 2 -Table 6	
			RW	[3]	SD/MMC/SDIO port clock line polarity	1'b0
					1: Send on the falling edge of the clock and collect on the rising edge;	
					0: Send on the rising edge of the clock, collect on the falling edge;	
			RW	[2]	Set SD/MMC/SDIO port fully automatic command and	1'b0
					multi-block transfer	
				C	'1': enable	
			\mathcal{O}		'0': off	
			\mathbf{v}		Setting this bit to 1 (mmc_io[7:6]==11) will trigger	
		\mathbb{R}	Y		Send a SD/MMC/SDIO command, response, 8	
		Y			null Clock, multi-block transfers. When the data transfer is complete	
					After completion, this bit will be automatically cleared.	
			RW	[1]	Select multiple block data transfer	1'b0
					direction.	
					Set the direction of multi-block transfer	
					'1' : read data.	
					'0' : Write data.	
- 1						

				1		
			RW	[0]	Set SD/MMC/SDIO port auto multiple	1'b0
					block data ransfer.	
					Set SD/MMC/SDIO port auto multi-block	
					transmission	
					'1' : enable.	
					'0' : off.	
					Setting this bit to 1 (mmc_io[7:6]==11) will trigger	
					Send a SD/MMC/SDIO multi-block transfer.	
					The number of data blocks is in mmc_blocknt	
					set in the register. When the data transfer is complete, this bit will	
					Automatically cleared.	
					<i></i>	
0x38	mmc_blockcnt		RW	[15:0]	Data block number register.	16'h0001
			\mathcal{O}		Data Block Number Register	
		5	$\mathbf{\nabla}$		Configuring this register defines a total of	
			Y		The number of data blocks to transmit.	
0x3C	mmc_timeoutcnt	Y	RW	[7:0]	Data transfer timeout count register.	8'h40
					Data Transfer Timeout Counter	
					Time = Scale* bit[7:0].	
					Scale via register	
					mmc_io_mbctl[7:6]/[5:4] definition;	
0x40	cmd_buf0		RW	[7:0]	The cmd_buf byte 0. Mapped to	8:00 a.m
1	1	1	1	1		

					command buf byte 0 , mapped to the command line	
					bit[15:8]	
0x44	cmd_buf1		RW	[7:0]	The cmd_buf byte 1. Mapped to	8:00 a.m
					command line bit [23:16]	
					command buf byte 1 , mapped to the command line	
					bit[23:16]	
0x48	cmd_buf2		RW	[7:0]	The cmd_buf byte 2. Mapped to	8:00 a.m
					command line bit [31:24]	
					command buf byte 2 , mapped to the command line	
					bit[31:24]	
0x4C	cmd_buf3		RW	[7:0]	The cmd_buf byte 3. Mapped to	8:00 a.m
				C	command line bit [39:32]	
			\mathcal{O}		command buf byte 3 , mapped to the command line	
		5			bit[39:32]	
0x50	cmd_buf4	$\langle \cdot \rangle$	RW	[7:0]	The cmd_buf byte 4. Mapped to	8:00 a.m
					command line bit [47:40]	
					command buf byte 4 , mapped to the command line	
					bit[47:40]	
0x54	cmd_buf5		RW	[7:0]	The cmd_buf byte 5. Mapped to	8:00 a.m
					command line bit [55:48]	
					command buf byte 5 , mapped to the command line	
					bit[55:48]	

0x58	cmd_buf6		RW	[7:0]	The cmd_buf byte 6. Mapped to	8:00 a.m
					command line bit [63:56]	
					command buf byte 6 , mapped to the command line	
					bit[63:56]	
0x5C	cmd_buf7		RW	[7:0]	The cmd_buf byte 7. Mapped to	8:00 a.m
					command line bit [71:64]	
					command buf byte 7 , mapped to the command line	
					bit[71:64]	
0x60	cmd_buf8		RW	[7:0]	The cmd_buf byte 8. Mapped to	8:00 a.m
					command line bit [79:72]	
					command buf byte 8 , mapped to the command line	
				C	bit[79:72]	
0x64	cmd_buf9		RW	[7:0]	The cmd_buf byte 9. Mapped to	8:00 a.m
		5	$\mathbf{\nabla}$		command line bit [87:80]	
		\mathbf{i}	Y		command buf byte 9 , mapped to the command line	
					bit[87:80]	
0x68	cmd_buf10		RW	[7:0]	The cmd_buf byte 10. Mapped to	8:00 a.m
					command line bit [95:88]	
					Command buf byte 10, mapped to the command line	
					bit[95:88]	
0x6C	cmd_buf11		RW	[7:0]	The cmd_buf byte 11. Mapped to	8:00 a.m
					command line bit [103:96]	

					Command buf byte 11, mapped to the command line	
					bit[103:96]	
0x70	cmd_buf12		RW	[7:0]	The cmd_buf byte 12. Mapped to	8:00 a.m
					command line bit [111:104]	
					Command buf byte 12, mapped to the command line	
					bit[111:104]	
0x74	cmd_buf13		RW	[7:0]	The cmd_buf byte 13. Mapped to	8:00 a.m
					command line bit [119:112]	
					Command buf byte 13, mapped to the command line	
					bit[119:112]	
0x78	cmd_buf14		RW	[7:0]	The cmd_buf byte 14. Mapped to	8:00 a.m
				C	command line bit [127:120]	
			\mathcal{O}		Command buf byte 14, mapped to the command line	
			$\mathbf{\nabla}$		bit[127:120]	
0x7C	cmd_buf15	\mathbf{i}	RW	[7:0]	The cmd_buf byte 15. Mapped to	8:00 a.m
					command line bit [135:128]	
					Command buf byte 15, mapped to the command line	
					bit[135:128]	
0x80	buf_ctrl		RW	[15] Data bu	ffer clear enable	1'b0
					1: Trigger data buffer clearing;	
					0: keep	
					When writing 1, this register is automatically cleared after one clock	

				zero;	
		RW	[14]		1'b0
				DMA request masking	
				0: no shielding;	
				1: shielded;	
				Note: Please configure this register before enabling dma;	
				Configuring this register after enabling dma has no effect;	
		RW	[13]	RSV	1'b0
		RW	[12] Data FIFO	status signal mask configuration	1'b0
				1: activate	
				0: default	
			C	Data FIFO status signal, high effective;	
		0.		Shield the FIFO full signal when reading the card device;	
		\mathbf{v}		Shield the FIFO empty signal when writing to the card device;	
		RW	[11] Set buffer	access direction	1'b0
	•			1: write	
1				0: read	
		RW	[10]	DMA hardware interface enable:	1'b0
	-			1: Enable DMA interface;	
				0: AHB interface accesses data cache;	
				When using the DMA interface, when the data transfer is complete the	
				Automatically reset this bit (single data block transfer or multiple data	

				block transfer)	
		RW	[9:2] Data c	ache data watermark setting; only when	8'd0
				Valid when buf_ctl[10]=1;	
				Note: The data cache depth is 128 words, not	
				To configure this register is greater than 127.	
		RO	[1] Data buf	fer empty signal	1'b1
		RO	[0] Data buf	fer full signal	1'b0
0x100~	data_buf	RW		data cache	THAT
0x2FF					

Bit5	Bit4	Bit3	Speed
0	0	0	1/2 base clock
0	0	1	1/4 base clock
0	1	0	1/6 base clock
0	1	1	1/8 base clock
1	0	0	1/10 base clock
1	0	,	1/12 base clock
1	1	0	1/14 base clock
1	1		1/16 base clock

Table 2 Mmc_ctrl[5:3] detailed definition

Note: When mmc_ctrl[6] = 1 and the controller works in high speed mode, base clk = hclk;

When mmc_ctrl[6] = 0, when the controller works in low speed mode, base clk = clk1m;

Clk1m= Fhclk/((mmc_cardsel[5:0]+1)*2)ÿ

Bit7 Bit6	Bit5 Bit4 E	it3 Bit2 Bi	t1 Bit0 Op	eration mo	de transmi	ssion byte			
x	x	x	x	x	0	x	0 no actio	ก	N/A
x	x	1	x	0	Trig x		0 genera	es 8 null clk	N/A
0	0	0	x	0	Trig x		0 send co	ommand	6
0	0	0	0	1	Trig x		0 receive	d response	6
0	0	0	1	1	Trig x		0 receive	d response	17
	0	0	0	0	Trig x		0 transfe	command + generate 8	N/A
1								null clk	

0	1	0	0	0	Trig x		0 transm	t command + receive ring	N/A
								answer	
1	1	0	0	0	Trig x		0 transm	t command + receive ring	N/A
								should + generate 8 null clk	
	x	x	x	x	0	1	Trig read	s a single data+8	mmc_bytecnt
x								null clk	
	x	x	x	x	0	0	Trig write	s a single data +8 null	mmc_bytecnt
x								clk	7

Table 3 Mmc_io[7:0] detailed definition

Noteÿ

1. Except for the last two lines in Table 3, other operations will generate a CMD DONE interrupt;

2. The last two operations in Table 3 will generate a data transfer completion interrupt.

Bit3 Bit2		data_crcl and data_crch register display contents
0	0	DAT0 Online data CRC value
0		DAT1 online data CRC value
1	0	DAT2 Online data CRC value
1	1	DAT3 online data CRC value

Table 4 mmc_crctrl[3:2] detailed definition

Bit7	Bit6	Bit2	Bit1 Bit0			
mmc	mmc_io mmc_io_mbctl		Operation description	Bytes transferred		
1	1	Trig	0	0 write	multi-block command+response+8 null	mmc_blockcnt
					clock+data	
	1	Trig	1	0 read	multi-block command+response+8 null	mmc_blockcnt
1					clock+data	
x	x	0	0	Trig	write multiple blocks of data	mmc_blockcnt
x	x	0	1	Trig	read multiple blocks of data	mmc_blockcnt

Table 5 mmc_io[7:6] and mmc_io_mbctl[2:0] detailed definition

Noteÿ

1. The first two column operations in Table 5 will generate multi-block data completion interrupts, and each block of data will generate data completion interrupts, and

CMD DONE interrupt;

2. When a timeout occurs, the multi-block data completion interrupt will not be generated, but a timeout interrupt will be generated.

Bit7	Bit6	time unit
0	0	1us
0	1	100us
,	0	10ms
,	,	1s

Table 6 mmc_io_mbctl[7:6] NAC timeout interrupt unit selection

Bit7	Bit6	time unit
0	0	1us
0		100us
1	0	10ms
1		1s

Table 7 mmc_io_mbctl[5:4] port timeout interrupt unit selection

Noteÿ

1. When using the DMA interface, the DMA enable needs to be turned on first;

2. If interrupt is not used, mmc_io[2] can be queried when transmitting command/response/8 null clock; when needed

When transferring data, you can query mmc_io[0]; when transferring multiple blocks of data, you can query mmc_io_mbctl[2]

/mmc_io_mbctl0]ÿ

3. When the Ncr timeout occurs, the data transmission will be interrupted, and the controller needs to reconfigure a new transmission;

14 SPI controllers

14.1 Function overview

SPI is an acronym for Serial Peripheral Interface. SPI is a high-speed, full-duplex, synchronous communication bus

Wire. The communication principle of SPI is very simple. It works in a master-slave mode. This mode usually has a master device and one or more slave devices. It needs

At least 4 wires, in fact, 3 wires are also possible (during one-way transmission), including SDI (data input), SDO (data output), SCLK (time

clock), CS (chip select).

14.2 Main Features

ÿ Can be used as both SPI master and SPI slave

ÿ 8-word-deep FIFOs for transmit and receive paths

ÿ master supports 4 formats of motorola spi (CPOL, CPHA), TI timing, macrowire timing

ÿ slave supports 4 formats of motorola spi (CPOL, CPHA)

ÿ Support full duplex and half duplex

 $\ddot{\text{y}}$ The master device supports bit transmission, up to 65535bit transmission

ÿ The slave device supports transmission modes of various byte lengths

ÿ The maximum clock frequency of spi_clk input from the device is 1/6 of the system APB clock

14.3 Functional description

14.3.1 Master-slave can be configured

The SPI controller supports both the device as a SPI communication master and the device as an SPI communication slave. Registered by setting SPI_CFG

Bit2 of the device can switch back and forth between the master and slave roles of the device.

14.3.2 Multiple Mode Support

When acting as a master device, by setting Bit1 (CPHA) and Bit0 (CPOL) of the SPI_CFG register, it can be used as MOTOROLA

Four formats of SPI transmit data. CPOL is used to determine the level of the SCK clock signal when it is idle, CPOL=0, the idle level is low,

When CPOL=1, the idle level is high level. CPHA is used to determine the sampling moment, CPHA=0, at the first clock edge of each cycle

Sampling, CPHA=1, sampling on the second clock edge of each cycle. The master can also be set by setting the TRANS_MODE register

The data is transmitted in TI timing or microwire timing, and the length of transmission data under the two timings can be adjusted.

As a slave device, it only supports the four formats of MOTOROLA SPI, and the format selection is also done by setting the same register as the master device

memory to achieve.

14.3.3 Efficient Data Transfer

The FIFO memory is a first-in-first-out dual-port buffer, that is, the first data that enters it is the first to be moved out, and one of the memory

One is the input port, and the other is the output port of the memory. The SPI controller integrates two FIFOs with a depth of 8 words each (one for each transceiver) to store

In order to increase the data transmission rate, handle a large number of data streams, and match systems with different transmission rates, the system performance is improved. able to pass

Setting the Bit[8:6] and Bit[4:2] of the MODE_CFG register can set the trigger level of RXFIFO and TXFIFO to meet different

Performance requirements at the same transmission rate. After the trigger level of the FIFO is triggered, an interrupt or DMA can be triggered to transfer data from the memory

Move to TXFIFO or move data from RXFIFO to memory.

14.4 Register Description

14.4.1 Register List

Table 109 SPI register list

offset address nam	e	abbreviation	access	describe	reset value
			RW is used to	carry out some related items on the transceiver channel	0X0000_0000
0X0000 channel coi	ntiguration register CH_CFG			configuration	
0X0004	SPI configuration register SF	I_CFG	RW	Configure SPI communication related items	0X0000_0004
0X0008 Clock confi	guration register Clk_CFG		RW is used to a	set the clock frequency division factor	0X0000_0000
0X000C mode confi	guration register MODE_CFG		RW configura	tion transfer mode	0X0000_0000
0X0010 Interrupt co	ntrol register SPI_INT_MASK		RW mask or	enable related interrupt	0X0000_00FF
0X0014 Interrupt sta	itus register SPI_INT_SOURC	E RW is used to query the interru	pt source		0X0000_0000
0X0018	SPI status register SPI_STA	rus	RO enumerate	s the relevant status in SPI communication	0X0000_0000
0X001C	SPI timeout register SPI_TIN	IE_OUT	RW Set SPI o	communication timeout	0X0000_0000
0X0020 Data transn	nission register SPI_TX_DATA		RW	TX FIFO, used to store data to be sent 0X0000_0	0000
0X0024 transfer mo	de register TRANS_MODE	~	RW set transf	ier mode	0X0000_0000
			When RO is us	ed as a slave device, it is used to store and send out or	0X0000_0000
UXUU28 Data length	register SLV_XMI1_LEN			The length of the received data	
0X002C		RSV		reserve	0X0000_0000
0X0030 Data receiv	ing register SPI_RX_DATA	7	RW/RO RX F	IFO, used to store received data 0X0000_0000	

14.4.2 Channel configuration register

Table 110 SPI channel configuration register

bit acces	S	Instructions	reset value
[31]		RSV	1'b0
[30:23] RW		RX_INVALID_BIT	8'h0

		Indicates how many first bits are invalid data when the receiving channel starts to receive, and these invalid data need to be thrown directly	
		out, does not enter the Rx FIFO. Only subsequent data enters the Rx FIFO	
		This register is used together with Tx/Rx length. Finally, the amount of data actually stored in the Rx FIFO is Tx/Rx	
		length - RX_INVALID_BIT	
		Note: master mode is valid	
		Motorola/TI mode valid	0
			1
[22]	RW	Clear FIFOs, clear the contents of Tx and Rx FIFO, and simultaneously reset all circuits of master and slave	1'b0
		(except configuration registers)	
		1'b0: Do not clear FIFO	
		1'b1: clear valid	
		Set to 1 by software, cleared to 0 by hardware	
		Note: master/slave are both valid	
		Motorola/Tl/microwire mode valid	
[21]	RW	continue mode, in this mode, spi sending is not affected by Tx FIFO empty. , continue to transmit until the entire	1'ЬО
		The transfer process is complete.	
	2	1'b0: normal, after the Tx FIFO is empty, it needs to wait for data to appear in the FIFO, and SCK stops toggling. Similarly,	
		After the Rx FIFO is full, SCK stops toggling and waits for the RX FIFO to have space to receive data	
		1'b1: continue mode, Tx fifo is empty, can still transmit until the transmission is completed, but at this time if the rx fifo	
		If it is full, you need to suspend the transmission until the rx fifo can store the number	
		Note: master is valid	
		Normally, this mode is not set.	

		When this mode is turned on, if there is no data in the tx fifo, invalid data may be sent out first. so please	
		Fill in the data first, then start the spi master	
		Motorola/TI/microwire mode valid	
[20]	RW	RxChOn, whether the receiving channel is open	1'b0
		1'b0: Rx channel off	
		1'b1: Rx channel on	
		Note: master/slave are both valid	
		Motorola/TI/microwire mode valid	
[19]	RW	TxChOn, whether the sending channel is open	1'b0
		1'b0: Tx channel off	
		1'b1: Tx channel on	
		Note: master/slave are both valid	
		Motorola/TI/microwire mode valid	
[18:3] RW		Tx/Rx length	16'h0
		When Spi is transmitting, the valid SCK number	
		It also indirectly reflects the length of the sent or received data.	
		When (TxChOn=1, RxChOn=1), it indicates the number of bits sent and the maximum number of bits received (with	
		How much the body receives is related to RX_INVALID_BIT)	
		When (TxChOn=1, RxChOn=0),	
		Indicates the number of bits sent,	
		When (TxChOn=0, RxChOn=1),	
		Indicates the maximum number of received bits (the specific number of received bits is related to RX_INVALID_BIT, the actual received number is Tx/Rx	

		length - RX_INVALID_BITÿ	
		When (TxChOn=0, RxChOn=0),	
		meaningless.	
		Note: master is valid	
		Motorola/TI/microwire mode available	
[2]	RW	Chip selects	1'b0
		1'b0: SPI_CS valid signal is 0	
		1'b1: SPI_CS valid signal is 1	r.
		Note: master is valid	
		Motorola/TI/microwire mode valid	
[1]	RW	Force CS out	1'b0
		1'b0: spi_cs signal output is controlled by hardware	
		1'b1: spi_cs signal output is controlled by software, the specific output value is Chip selects	
		This signal can be combined with Chip selects to realize the programmable output csn signal, that is, when the signal is 1, spi_cs	
		= Chip selects	
		Note: master is valid	
	S	Motorola/Tl/microwire mode valid	
[0]	RW	SPI start,	1'b0
		Command SPI to start receiving or sending, write 1 for spi to start working, after that, it will automatically reset to zero	
		1'b0: Stop spi from working	
		1'b1: Start a sending or receiving of spi, automatically reset to zero	
		Note: master is valid	

L

	Motorola/TI/microwire mode valid	

14.4.3 SPI Configuration Registers

Table 111 SPI configuration register

bit acc	ess	Instructions	reset value
[31:19]		RSV	13'h0
[18:17] RW		FRONT FORMAT	2'b0
		2'b00: motorola	,
		2'b01:TI	
		2'b10:microwire	
		2'b11:RSV	
		Select the master to support the protocol of that manufacturer	
		Note: master is valid	
[16]	RW	SPI_TX pin always driven	1'b0
		1'b0: The spi output is only driven when spi_cs is valid, and is tri-state at other times	
		1'b1: spi output is always driven, even when no data is being transferred	
		Note: master/slave are both valid	
1		Motorola/Tl/microwire mode valid	
[15]		RSV	1'b0
[14:12] RW		cs hold, the time that spi_cs continues to be valid after the data transmission is completed, that is, the hold time of spi_cs	3'b0
		3'b000 >=1 APB bus CLK	
		3'b001 >=2 APB bus CLK	
		3'b010 >=4 APB bus CLK	

		3'b011 >=8 APB bus CLK	
		3'b100 >=16 APB bus CLK	
		3'b101 >=32 APB bus CLK	
		3'b110 >=64 APB bus CLK	
		3'b111 >=127 APB bus CLK	
		Note: master is valid	
		Motorola mode works	
[11:9] R\	V	cs setup, spi_cs is valid ahead of time before data transmission, that is, the setup time of spi_cs	3'b0
		3'b000 >=1 APB bus CLK	
		3'b001 >=2 APB bus CLK	
		3'b010 >=4 APB bus CLK	
		3'b011 >=8 APB bus CLK	
		3'b100 >=16 APB bus CLK	
		3'b101 >=32 APB bus CLK	
		3'b110 >=64 APB bus CLK	
		3'b111 >=127 APB bus CLK	
	Δ	Note: master is valid	
		Motorola mode works	
[8:7] RW		SPI-out delay, SPI data output relative to SCK delay, mainly for the consideration of hold time.	2'b0
		[8:7] System clock cycle number (APB clock)	
		2'b00 °	
		2'b01 1	

		2'b10 2	
		2'b11 3	
		Note: master/slave are both valid	
		Motorola mode works	
[6:4] RW		Frame delay, the default interval between the end of a frame (spi_cs valid period) transmission and the start of the next frame is SCK	3'b0
		Half of the clock period, that is, the SPI_CS inactive time. But for compatibility, it is configurable here. Default at least 0.5SCK	\bigcirc
		[6:4] SCK clock	
		3'b000 0	
		3'b001 2	
		3'b010 4	
		3'b011 8	
		3'b100 16	
		3'b101 32	
		3'b110 64	
		3'b111 127	
		For example, if 128byte data is transmitted in block mode, after the data transmission is completed, the set delay will be added.	
	$\langle h \rangle$	Late time.	
		Note: master is valid	
[3]	RW	Bigendian	1'b0
		1'b0: The data format adopts the little-endian mode, that is, the low byte is sent first during transmission	
		1'b1: The data format adopts big-endian mode, that is, the high byte is sent first during transmission	
[2]	RW	MASTER/SLAVE	1'b1

		1'b0: slave, the device is slave	
		1'b1: master, the device is the master	
		Note: master/slave are both valid	
[1]	RW	SPI CPHA	1'b0
		1'b0: Transmission mode A	
		1'b1: Transmission mode B	\bigcirc
		Note: master/slave are both valid	,
		Motorola mode works	
[0]	RW	SPI CPOL, polarity of SCK at IDLE	1'b0
		1'b0: 0 when SCK is IDLE	
		1'b1: 1 when SCK is IDLE	
		Note: master/slave are both valid	
		Motorola mode works	

14.4.4 Clock configuration register

Table 112 SPI clock configuration register

bit acc	ess	Instructions	reset value
[31:16]	\sim	RSV	16'h0
[15:0] RW	1	Divider	16'h0
		FSCK = FAPB_CLK/ (2 x (Divider +1))	
		Note: master is valid	
		Motorola/TI/microwire mode valid	
[31:16]		RSV	16'h0

[15:0] RW	Divider	16'h0
	FSCK = FAPB_CLK/ (2 x (Divider +1))	
	Note: master is valid	
	Motorola/TI/microwire mode valid	

14.4.5 Mode configuration register

bit acce	SS	Instructions	reset value
[31:9]		RSV	23'h0
[8:6] RW		RxTrigger level	3'b0
		The data stored in RX FIFO triggers the threshold of interrupt or DMA request: 0~7word	
		Only when the data in rxbuffer is greater than the RxTrigger level, will an interrupt be triggered or a DMA move requested	
		Note: master/slave are both valid	
		Motorola/TI/microwire mode valid	
[5]		RSV	1'b0
[4:2] RW	X	TxTrigger level	3'b0
	Δ	The data stored in TX FIFO triggers the threshold of interrupt or DMA request: 0~7word	
		Only when the data in the txbuffer is greater than or equal to the TxTrigger level, will the interrupt be triggered or the DMA move will be requested.	
		shift	
		Note: master/slave are both valid	
		Motorola/TI/microwire mode valid	
[1]	RW	RxDMA On, using DMA to move data enable	1'b0

		1'b0: do not use DMA,	
		1'b1: Using DMA	
		Note: master/slave are both valid	
		Motorola/TI/microwire mode valid	
[0]	RW	TxDMA On, using DMA to move data enable	1'b0
		1'b0: do not use DMA,	\bigcirc
		1'b1: Using DMA	
		Note: master/slave are both valid	
		Motorola/TI/microwire mode valid	

14.4.6 Interrupt Control Register

bit acce	ss	Instructions	reset value
[31:8]		RSV	24'h0
[7]	RW	IntEn_spi_timeout	1'b1
		1'b0: enable spi_timeout interrupt	
	\sim	1'b1: spi_timeout interrupt not allowed	
		Note: master/slave are both valid	
		Motorola/TI/microwire mode valid	
[6]	RW	IntEn_spi_done	1'b1
		1'b0: spi send or receive complete, enable interrupt	
		1'b1: spi sending or receiving is complete, interrupts are not allowed	

Table 114 SPI interrupt control register

		Note: both master/slave are valid Motorola/TI/microwire mode is valid	
[5]	RW	IntEnRxOverrun	1'b1
		1'b0: Rx FIFO overflow interrupt enable	
		1'b1: Rx FIFO overflow interrupt disabled	
		Note: both master/slave are valid Motorola/TI/microwire mode is valid	
[4]	RW	IntEnRxUnderrun	1'b1
		1'b0: Rx FIFO underflow interrupt disabled	,
		1'b1: Rx FIFO underflow interrupt enable	
		Note: both master/slave are valid Motorola/TI/microwire mode is valid	
[3]	RW	IntEnTxOverrun	1'b1
		1'b0: Tx FIFO overflow interrupt enable	
		1'b1: Tx FIFO overflow interrupt disabled	
		Note: both master/slave are valid Motorola/TI/microwire mode is valid	
[2]	RW	IntEnTxUnderrun	1'b1
		1'b0: Tx FIFO underflow interrupt enable	
	X	1'b1: Tx FIFO underflow interrupt disabled	
	Z	Note: both master/slave are valid Motorola/TI/microwire mode is valid	
[1]	RW	IntEnRxFifoRdy	1'b1
		1'b0: Rx FIFO has data upload interrupt enable	
		1'b1: Rx FIFO has data upload interrupt disabled	
		Note: both master/slave are valid Motorola/TI/microwire mode is valid	
[0]	RW	IntEnTxFifoRdy	1'b1

о С		
	1'b0: Tx FIFO can write data to TX FIFO interrupt enable	
	1'b1: Tx FIFO can write data to TX FIFO interrupt is not enabled	
	Note: both master/slave are valid Motorola/TI/microwire mode is valid	

14.4.7 Interrupt Status Register

Table 115 SPI Interrupt Status Register

bit acce	SS	Instructions	reset value
[31:8]		RSV	24'h0
[7]	RW	spi_timeout	1'b0
		1'b0: There is no end data in rxfifo to be fetched by CPU	
		1'b1: There is end data in rxfifo that needs to be fetched by the CPU	
		Write 1 to clear	
		Note: both master/slave are valid Motorola/TI/microwire mode is valid	
[6]	RW	spi_done	1'b0
		1'b0: SPI send or receive is not completed	
		1'b1: SPI send or receive completed	
	\mathbf{x}		
	$\langle N \rangle$	Write 1 to clear	
		Note: both master/slave are valid Motorola/Tl/microwire mode is valid	
[5]	RW	RxOverrun	1'b0
		1'b0ÿRx FIFO overflow	
		1'b1ÿRx FIFO overflow	
		Write 1 to clear	

		Note: both master/slave are valid Motorola/TI/microwire mode is valid	
[4]	RW	RxUnderrun	1'b0
		1'b0ÿRx FIFO underflow	
		1'b1ÿRx FIFO underflow	
		Write 1 to clear	
		Note: both master/slave are valid Motorola/TI/microwire mode is valid	
[3]	RW	TxOverrun	1'b0
		1'b0ÿTx FIFO overflow	
		1'b1ÿTx FIFO overflow	
		Write 1 to clear	
		Note: both master/slave are valid Motorola/TI/microwire mode is valid	
[2]	RW	TxUnderrun	1'b0
		1'b0ÿTx FIFO underflow	
		1'b1ÿTx FIFO underflow	
		Write 1 to clear	
		With continue mode = 1, this interrupt is never generated.	
	Δ	Note: both master/slave are valid Motorola/TI/microwire mode is valid	
[1]	RW	RxFifoRdy	1'b0
		1'b0: Rx FIFO data volume <= RxTrigger level, no need to upload	
		1'b1: Rx FIFO data volume > RxTrigger level, request to upload	
		Write 1 to clear	
		Note: both master/slave are valid Motorola/TI/microwire mode is valid	

[0]	RW	TxFifoRdy	1'b0
		1'b0: Tx FIFO data volume > TxTrigger level, cannot write data to TX FIFO	
		1'b1: Tx FIFO data volume <= TxTrigger level, can write data to TX FIFO	
		Write 1 to clear	
		Note: both master/slave are valid Motorola/TI/microwire mode is valid	

14.4.8 SPI Status Register

bit acc	ess	Instructions	reset value
[31:13]		RSV	19'h0
[12]	RO	SPI Busy	1'b0
		1'b0: SPI has no send and receive tasks	
		1'b1: SPI is in the process of sending or receiving	
		Note: both master/slave are valid Motorola/TI/microwire mode is valid	
[11:6] RO		RX FIFO fill level	6'h0
		The amount of data in the Rx FIFO, in bytes Note: both master/slave are valid Motorola/TI/microwire mode is valid	
[5:0]	RO	Tx FIFO fill level	6'h0
		The amount of data in the Tx FIFO, in bytes	
		Note: both master/slave are valid Motorola/TI/microwire mode is valid	

Table 116 SPI Status Register

14.4.9 SPI Timeout Register

bit access		Instructions	reset value
[31]	RW	sleep_timer_en	1'b0
		1'b0: Timer is not allowed	
		1'b1: Allow timer timing	
		Note: both master/slave are valid Motorola/TI/microwire mode is valid	
[30:0] RW		SPI_TIME_OUT	31'h0
		When a transmission is completed, in the receiving path rxfifo, if the end data cannot trigger the receiving interrupt	
		When RxFifoRdy or DMA requests, a timing mechanism needs to be used to notify the CPU to remove the end data.	
		Specific method: when rxfifo is in idle state (no read and write operations, no dma request, cs is invalid,	
		There is data in rxfifo, and the amount of data is less than or equal to RxTrigger level), start counting, and reach the register setting	
		If the set value is set, a timeout interrupt is triggered and the CPU is requested to remove the end data.	
		Any read or write operation to rxfifo will clear the timeout timer.	
	$\langle h \rangle$	The time represented is: T = SPI_TIME_OUT/FAPB_CLK	
		Note: both master/slave are valid Motorola/TI/microwire mode is valid	

Table 117 SPI Timeout Register

14.4.10 Data Transmit Register

Table 118 SPI data transmission register

bit access	Instructions	reset value
1820		

[31:0] RW	Window address for writing data to Tx FIFO	32'h0
	Note:	
	Both master/slave are valid	
	Motorola/TI/microwire mode valid	

14.4.11 Transfer Mode Register

bit acce	ess	Instructions	reset value
[31:30]		RSV	16'd0
[29:24] RW		TI_BLK_LEN	6'd0
		In the timing mode of TI, the length of each block transmission is the transmission data length after each CS is valid.	
		Support 4~32bit	
		6'h4: 4bit long data	
		6'h5: 5bit long data	
		6'h6: 6bit long data	
	$\langle \rangle$	6'h20: 32bit long data	
		Note: master is valid	
		TI mode is valid	
[16]	RW	MICRO_BURST	1'b0
		1b'1: In Microwire mode, burst transmission is used, that is, Tx sends the control word, Rx receives data, in turn	
		Alternately, MICRO_CONTROL_LEN represents the length of the control word, and MICRO_DAT_LEN represents	

Table 119 SPI transfer mode register

		It is the length of the sent or received word, Tx/Rx length represents the effective sck, burst during the entire transmission process	
		In this mode, the number of alternate sending and receiving is (Tx/Rx length)/(MICRO_CONTROL_LEN+	
		MICRO_DAT_LEN+1)	
		1'b0: In Microwire mode, do not use burst transmission	
		In this mode, there are two cases	\bigcirc
		1) tx_ch_on = 1, rx_ch_on = 0, at this time, only send, MICRO_CONTROL_LEN means	
		Control word length, Tx/Rx length indicates the effective sck during the entire transmission process, and the length of the data sent at this time	
		The degree is m*MICRO_DAT_LEN = Tx/Rx length - MICRO_CONTROL_LEN, where m represents	
		How many (MICRO_DAT_LEN) length words to send	
		2) tx_ch_on = 1, rx_ch_on = 1, at this time, Tx sends the control word, Rx receives data,	
		MICRO_CONTROL_LEN represents the control word length, Tx/Rx length represents the entire transmission process	
		Valid sck during the process, the received data length is m*MICRO_DAT_LEN = Tx/Rx length	
		MICRO_CONTROL_LEN-1, where m indicates how many (MICRO_DAT_LEN) length words are received	
		Note: master is valid	
1	Δ	microwire mode is valid	
[13:8] RW	1	MICRO_DAT_LEN	6'd0
		In Microwire mode, in burst mode, the length of each burst transmission data	
		From 1~32:	
		6'h1: 1bit long data	
		6'h2: 2bit long data	

	-	
	6'h3: 3bit long data	
	6'h20 32bit long data	
	Note: master is valid	
	microwire mode is valid	
[5:0] RW	MICRO_CONTROL_LEN	6'd0
	In Microwire mode, the length of the command word	,
	From 1~32:	
	6'h1: 1bit long command	
	6'h2: 2bit long command	
	6'h3: 3bit long command	
	6'h20 32bit long command	
	Note: master is valid	
	microwire mode is valid	

14.4.12 Data Length Register

Table 120 SPI data length register

bit acc	ess	Instructions	reset value
[31:16] RO		When working as a slave, the length of the data sent out during the effective period of cs, the unit is bit	16'h0
		Note: slave is valid	
		Motorola mode works	

Winner Micro 联盛德微电子

[15:0] RO	When working as a slave, the received data length during the effective period of cs, the unit is bit	16'h0
	Note: slave is valid	
	Motorola mode works	

14.4.13 Data Receive Register

Table 121 SPI Data Receive Register

bit acce	ess		Instructions	reset value
[31:0] RO		Window address for reading data from Rx FIFO	• () >	32'h0
		Note: master/slave are both valid		
		Motorola/TI/microwire mode valid		

221

15 I2C controller

15.1 Function overview

The I2C bus is a simple, bidirectional, two-wire synchronous serial bus. It requires only two wires to transmit information between devices connected to the bus

breath.

The master device is used to start the bus to transmit data and generate the clock to open the device for transmission. At this time, any addressed device is considered a slave

pieces. The relationship between master and slave, send and receive on the bus is not constant, but depends on the direction of data transmission at this time. If the master wants to send data to the slave

device, the host first addresses the slave device, then actively sends data to the slave device, and finally the host terminates the data transmission; if the host wants to receive

For the data from the device, the slave device is first addressed by the master device. Then the host receives the data sent from the device, and finally the host terminates the receiving process.

in this case. The host is responsible for generating the timing clock and terminating data transfers.

15.2 Main Features

ÿ APB bus protocol standard interface

ÿ Can only be used as a master device controller

ÿ I2C working rate can be configured, 100KHz~400KHz

ÿ Multiple GPIOs can be multiplexed as I2C communication interface

ÿ Fast output and detection of timing signals

15.3 Functional description

15.3.1 Transmission rate selection

By setting the register PRERIo and register PRERhi, the data transmission rate on the I2C bus can be configured from 100KHz to

Integer divider value for any bus frequency between 400KHz.

15.3.2 Interruption and start-stop controllable

Enable or disable the I2C controller to generate interrupts by setting Bit6 of the register CTR, and can also be started at any time by setting Bit7

Or stop the work of the I2C controller.

15.3.3 Fast output and detection signal

By setting the corresponding bit of the register CR_SR, the controller can quickly output or detect the bus START signal, bus STOP signal, total

Line ACK signal, bus NACK signal. In master mode, the I2C interface initiates data transfers and generates clock signals. a serial data transfer

Output always begins with a start signal and ends with a stop signal. Once a START signal is generated on the bus, master mode is selected.

15.4 Register Description

15.4.1 Register List

Table 122 I2C register list

offset address nam	e	abbreviation	access	describe	reset value
020000			RW Stores th	e lower 8-bit frequency division value for APB	0X0000_00FF
	Clock Divider Register_1	FREGERVET		The bus clock is divided	
020004			RW stores th	e high 8-bit frequency division value for APB	0X0000_00FF
0X0004	Clock Divider Register_2	FRENI		The bus clock is divided	
0X0000 Central rog	ator.	CTP	RW is used to	o control interrupt enable and I2S control	0X0000_0040
0x0008 Control reg	Ster			device enable	
0X000C data regist	er	TXR_RXR	RW is used to	store the data to be sent or receive 0X0000_0000	

				The data	
0X0010 Transceive	r control register	CR_SR	RW is used to	o control some data read and write related operation	ons 0X0000_0000
0X0014	TXR readout register	TXR	RO reads the	TXR register value 0X0000_0000 when I2C send	5
0X0018	CR read register	CR	RO Read the	setting value of I2C control register CR 0X0000_0	000

15.4.2 Clock frequency division register_1

Table 123 I2C clock frequency division register_1

bit acc	ess	Instructions	reset value
[31: 8]		reserve	
[7 : 0] RW		Clock frequency division configures the lower 8 bits of prescale.	8'hff
		E.g:	
		apb_clk=40MHz, SCL=100KHz	
		prescale = (40*1000)/(5*100) - 1 = 16'd79	
		apb_clk = 40M, SCL=400K	
		prescale=(40*1000)/(5*400) – 1 = 16'd19	

15.4.3 Clock frequency division register_2

Table 124 I2C clock frequency division register_2

bit acc	ess	Instructions	reset value
[31: 8]		reserve	
[7 · 0] PW/		Clock frequency division configures the upper 8 bits of prescale.	8'hff
[7.0] KW		E.g:	

	apb_clk=40MHz, SCL=100KHz	
	prescale = (40*1000)/(5*100) - 1 = 16'd79	
	apb_clk = 40M, SCL=400K	
	prescale=(40*1000)/(5*400) – 1 = 16'd19	

15.4.4 Control Registers

Table 125 I2C Control Register

bit acco	ess	Instructions	reset value
[31:8]		reserve	
[7]	RW	I2C enable control,	1'b0
		1'b0: disable	
		1'b1: enable	
[6]	RW	Interrupt MASK,	1'b1
		1'b0: enable interrupt generation	
		1'b1: Interrupts are not allowed	
[5:0]		reserve	

15.4.5 Data Registers

Table 126 I2C Data Register

bit acc	ess	Instructions	reset value
[31:8]		reserve	
[7:0] WR		When writing this register, it is the transmit register TXR,	8'h0

	Indicates the next byte to be sent,	
	When it is a device address,	
	[0]: 1 means read, 0 means write.	
	When reading this register, it is the receive register RXR,	
	is the most recent byte received from I2C.	\bigcirc

15.4.6 Transceiver Control Register

bit acc	ess	Instructions	reset value
[31:8]		reserve	
[7:0] WR		When writing this register, it is CR, and its function is as follows:	8'h0
		[7]: STA, control to generate START sequence;	
		1'b0: invalid	
		1'b1: Generate START timing	
	$\langle \rangle$	[6]: STO, control to generate STOP sequence;	
		1'b0: invalid	
		1'b1: Generate STOP timing	
		[5]: RD, read from SLAVE;	
		1'b0: invalid	

Table 127 I2C transceiver control register

1'b1: read from SLAVE	
[4]: WR, write to SLAVE;	
1'b0: invalid	
1'b1: Write to SLAVE	
[3]: Control sends ACK/NACK to SLAVE;	
1'b0: times ACK	
1'b1ÿÿ WANT	
[2:1]: reserved;	
[0]: IACK, clear interrupt status, 1 is valid;	
1'b0: invalid	
1'b1: Clear interrupt flag	
When reading this register, it is SR, and its function is as follows:	
[7]: RxACK, ACK/NACK status received from SLAVE;	
1'b0: ACK received from SLAVE	
1'b1: NAK received from SLAVE	
[6]ÿBUSYÿ	
1'b0: STO followed by 0	
	1b1: read from SLAVE [4]: WR, write to SLAVE; 1b0: invalid 1b1: Write to SLAVE [3]: Control sends ACK/NACK to SLAVE; 1b0: times ACK 1b1: Write to SLAVE [0]: LACK, clear interrupt status, 1 is valid; 1b0: invalid 1b1: Clear interrupt status, 1 is valid; 1b1: Clear interrupt flag VMm mading the majore; its 68, seet intertors is an interve [7]: RXACK, ACK/NACK status received from SLAVE; 1b0: ACK received from SLAVE 1b1: NAK received from SLAVE [S]/SUSYY 1b0: STO followed by 0

1'b1: STA is set to 1	
[5]: AL, Arbitration Lost, this bit is reserved	ed;
[4:2]: reserved;	
[1]ÿTIPÿ	
1'b0: No transfer in progress	
1'b1: There is a transfer in progress	
[0]: IF, interrupt status bit;	
1'b0: No interrupt generated	
1'b1: Set to 1 when transfer complete or	AL

15.4.7 TXR Readout Register

Table 128 I2C TXR readout register

bit acc	ess	Instructions	reset value
[31:8]		reserve	
[7:0]	RO	Read only, the read value of the TXR register,	8'h0
	/	See the TXR_RXR register for the function description;	

15.4.8 CR Read Register

Table 129 I2C CR readout register

bit access Instructions	reset value
-------------------------	-------------

[31:8]		reserve	
[7:0]	RO	Read only, read value of CR register,	8'h0
		See the CR_SR register for the function description;	

16 I2S controller

16.1 Function overview

I2S (Inter-IC Sound) is for digital audio devices (such as CD players, digital sound processors, digital TV audio systems)

A bus standard developed for the transmission of audio data between It adopts the design of independent wire transmission clock and data signal, by connecting the data

The separation of data and clock signals avoids the distortion caused by time difference, and saves the cost of purchasing professional equipment to resist audio jitter for users. mark

The standard I2S bus cable is composed of 3 serial wires: 1 is a time division multiplexing (referred to as TDM) data line; 1 is a word selection

wires; 1 is a clock wire.

16.2 Main Features

ÿ Implement I2S interface, support I2S and PCM protocols

ÿ Support amba APB bus interface, 32bit single read and write operations

ÿ Support master-slave mode

ÿ Support 8, 16, 24, 32 bit width, the highest sampling frequency is 192KHz

ÿ Support mono and stereo mode

ÿ Compatible with I2S and MSB justified data format, compatible with PCM A/B format

ÿ Support DMA request read and write operations, only support word-by-word operations

16.3 Functional description

16.3.1 Multiple Mode Support

By setting Bit[25:24] of the I2S Control register, the data format can be set to I2S format, MSB justified format, PCM A

format, or PCM B format; the mono or stereo mode can be selected by setting Bit[22] of the I2S Control register. pass

Setting Bit[5:4] of the I2S Control register can set the bit width of the data transmission word, which can be set to 8bit, 16bit, 24bit, or 32bit.

16.3.2 Zero Crossing Detection

By setting Bit[17:16] of the I2S Control register, you can set whether to enable the zero-cross detection function of the left and right channels; by setting

Bit[9:8] of the I2S_IMASK register can set whether the zero-cross detection function of the left and right channels generates an interrupt. If detection is enabled, and

And the interrupt is enabled, when the zero-cross phenomenon is detected, the program will execute the interrupt subroutine, and at the same time, Bit[9:8] of the I2S_INT_FLAG register

The corresponding bit will be set to 1.

16.3.3 Efficient Data Transfer

The FIFO memory is a first-in-first-out dual-port buffer, that is, the first data that enters it is the first to be moved out, and one of the memory

One is the input port, and the other is the output port of the memory. The I2S controller integrates two FIFO storages with a depth of 8 words each (one for each transceiver)

In order to increase the data transmission rate, handle a large number of data streams, and match systems with different transmission rates, the system performance is improved. able to pass

Setting Bit[14:12] and Bit[11:9] of the I2S Control register can set the trigger level of RXFIFO and TXFIFO to meet

Performance requirements at different transfer rates. After the trigger level of the FIFO is triggered, it can trigger an interrupt or DMA to transfer the data from the internal

Store and move to TXFIFO or move data from RXFIFO to memory

16.4 I2S/PCM Timing Diagram

This module provides support for 4 protocols, standard I2S, MSB Justified, PCM-A, PCM-B. Through configuration register 0x00[25:

24] to choose which protocol to use. The specific interface timing of each protocol is shown in Fig1 to Fig4.

Fig2. MSB Justified Timing DiagramÿPCM=0ÿFormat=1ÿ

Fig4. PCM B Audio DiagramÿPCM=1ÿFormat=1ÿ

16.5 FIFO storage structure diagram

N+3		N+2		N+1			N		
7	0 7		0 7		0	7		0	
Stereo 8-bit o	lata mode				2	2	2		
LEFT+	1 0 7	RIGHT+1	0 7	, LEFT	0	7	RIGHT	0	
Mono 16-bit o	lata mode								
	N+1					N			
15			0 1	5			×<	0	
Stereo 16-bit	data mode						-6	e)	
15	LEFT		0 1	5	RIC	GHT		0	
				-					
Mono 24-bit o	lata mode								
	2	3		N				0	
Stereo 24-bit	data mode								
				LEET					
	2	3						0	N
				PICHT					Nia
	2	3		NON				0	INT
Mono 32-bit o	lata mode								
			N						
31			N					0	
Stereo 32-bit data mode									
Stereo 32-bit									N
Stereo 32-bit			LEFI						

Fig 5. FIFO storage structure

The I2S module provides two 8x32bit FIFOs, one as TX FIFO and one as RX FIFO.

The storage structure of data in FIFO is different according to different working modes. When working in mono 8bit mode, each word in FIFO

Can store 4 sample data. When working in dual-channel 8bit mode, left and right channel data are alternately stored in FIFO, at low

The bit byte stores the right channel data, and the high bit byte stores the left channel data. A word can store 2 sample numbers

according to. In simplex 16bit mode, one word can store 2 samples; in duplex 16bit mode, one word can store one

For sample data, the lower 16 bits are the right channel, and the upper 16 bits are the left channel. In 24bit and 32bit mode, each word can only store one

The sample data or the data of a channel, the specific storage method is shown in Figure 5.

16.6 I2S module working clock configuration

The working clock configuration of the I2S module can be configured by setting the 0x40000718 register in the clock and reset module to select an external clock source

The clock is still the internal 160MHz clock, whether to enable the MCLK clock, and the operating frequency of MCLK and BCLK.

By setting the register 0x40000718[0], you can choose to use the internal 160MHz clock or use the external clock as the I2S module clock

source. If an external clock is selected, the I2S module will use the clock input from IO- I2S_M_EXTCLK (PA_5, Option 4) as the module time

Zhong Yuan.

And 0x40000718[1] selects whether to enable MCLK clock. [7:2] bits are the area to configure the MCLK divider ratio. Calculated as follows:

F_mclk=F_I2SCLK/MCLKDIV

F_mclk is the actual MCLK frequency;

F_I2SCLK is the clock source of the I2S module. If the internal clock is selected, then F_I2SCLK =160MHz; if the external clock is selected, then

F_I2SCLK is equal to the clock frequency of external input;

MCLKDIV is the clock frequency division ratio configured by register 0x40000718[7:2]. It should be noted that MCLKDIV>=2;

Bits [17:8] of register 0x40000718 are the area for configuring the division ratio of BLCK clock. The frequency division ratio calculation formula is as follows:

F_BCLK=F_I2SCLK/BCLKDIV

F_BCLK is the actual working frequency of BCLK;

F_I2SCLK is the clock source of the I2S module. If the internal clock is selected, then F_I2SCLK =160MHz; if the external clock is selected, then

F_I2SCLK is equal to the clock frequency of external input;

BCLKDIV is the frequency division ratio that needs to be configured. Different frequency division ratios need to be selected according to different working modes. The formula for selecting the divider ratio is as follows:

BCLKDIV=round (F_I2SCLK/(Fs*W*F))

Fs is the sampling frequency of audio data on the I2S interface, up to 192KHz;

W is the sampling bit width, 8/16/24/32 bit can be selected;

F is mono/dual channel selection. When the transmission data is monophonic, F=1, and when the transmission data is dual-channel, F=2;

The final calculated frequency division ratio is rounded up.

The following is an example of selecting BCLKDIV according to the actual working mode:

If the internal clock is selected as the module clock source, 128KHz sampling rate and 24bit two-channel data need to be transmitted, then BCLKDIV needs to be set for calculation

The process is as follows:

BCLKDIV=round(160*10e6/128*10e3*24*2)=10'd26ÿ

The frequency division register is described as follows:

0x18	I2S_Clk_Ctrl	[0]	RW EXT	AL_EN	1'b0
				External clock select	
				Select whether use External or Internal	
				clock for I2S block	
				0=internal clk	
				1=external clk	
				Note: When External clock is enabled,	
				the external clk must be 2*N*256 fs,	
				where fs is sample frequency and N	
				must be integer.	

	[1]	RW MCL	KEN	1'b0
			MCLK enable	
			0=MCLK disabled	
			1=MCLK enabled	
	[7:2]	RW MCL	KDIV	6'd0
			MCLK divider	
			If external clock is selected, this divider	
			is used to produce proper MCLK	
			frequency.	
			F_mclk=F_I2SCLK/MCLKDIV	
			Where MCLKDIV >=2	
			F_mclk=F_I2SCLK when MCLKDIV=0	
			Where F_I2SCLK is external clk.	
			Note: F_mclk should be configured as	
			²⁵⁶ * fs where fs is sample frequency.	
	[17:8]	RW BCL	KDIV	10'd0
			BCLK divider	
			F_BCLK=F_I2SCLK/BCLKDIV	
			Note: When EXTAL_EN is not selected,	
			Internal PLL is used and	
			F_I2SCLK =160MHz	

		When WXTAL_EN is enabled,	
		F_I2SCLK = External crystal frequency	
		BCLKDIV=round (F_I2SCLK/(Fs*W*F))	
		Where Fs is sample frequency of audio	
		data and W is word width.	
		F=2 when data is stereo and	
		F=1 when data is mono.	
		For example, if internal PLL is used and	
		the data width is 24bit, Format is stereo	
		format, sample frequency is 128KHz.	
		Then the BCLKDIV should be configured	
		as (160*10e6/128*10e3*24*2) =10'd26	
[31:18] RO		RSV	14'd0
	[31:18] RC	[31:18] RC	When WXTAL_EN is enabled, F_I2SCLK = External crystal frequency BCLKDIV=round (F_I2SCLK/(Fs*W*F)) Where Fs is sample frequency of audio data and W is word width. F=2 when data is stereo and F=1 when data is stereo and F=1 when data is mono. For example, if internal PLL is used and the data width is 24bit, Format is stereo format, sample frequency is 128KHz. Then the BCLKDIV should be configured as (160*10e6/128*10e3*24*2) =10'd26 [31:18] RC

16.7 Other function instructions:

16.7.1 Zero Crossing Detection:

In order to avoid noise caused by sudden frequency changes caused by data corruption, the I2S module provides a zero-crossing detection function for each channel.

When the two adjacent data sign bits sent change, the module will generate an interrupt to remind the MCU to detect and process; at the same time, the latter

Data is forcibly muted.

16.7.2 Mute function

When the mute function is turned on, the data will still be sent, but the output data will be forced to be 0;

16.7.3 Interrupts

This module provides send/receive Completion interrupt, left and right channel zero-crossing detection interrupt, send/receive FIFO threshold interrupt (number in send FIFO

The data is lower than the threshold, the data in the receiving FIFO is higher than the threshold), the underflow/overflow of the sending/receiving FIFO is interrupted. The interrupt state is at

Query in register 0x08.

16.7.4 FIFO Status Query

Register 0x10 provides CPU status query function for sending/receiving FIFO in I2S module. CPU can check FIFO by register

How much data is left unprocessed in . Several bytes in the last word in the receive FIFO are valid data.

16.8 Data transmission process

16.8.1 Master sends audio data

1. Configure the used pins, SDO, BCLK, LRCLK

2. Refer to Section 2.4 to set the register 0x40000718 in the clock and reset module, and configure the working clock frequency;

3. Set the I2S register 0x00, set it to master mode, configure the transmission format, channel selection, data bit width, left and right channels are

No Enable zero-crossing detection, and set the transmit path -txen to open.

4. Set register 0x4 to enable the desired interrupt;

5. If DMA is used to transfer data, select the channel used in the DMA module, and configure the address and length of the transmitted data. and in I2S

DMA is enabled in module register 0x0, and the FIFO threshold is set. When the data in FIFO is lower than the threshold range, it will automatically request DMA

Move data.

6. Write the data to be transmitted to the transmit FIFO address-register 0x10, enable the register 0x0[0], and the module will automatically read from the FIFO

Take out the data and send it to the I2S bus.

7. When the data in the FIFO is less than the set threshold, the module will request data from the DMA module, or send a TXTHIF interrupt.

8. When all the data in the FIFO is taken out, the TXDONE interrupt will be set. When the last frame is sent, the TXUDIF interrupt will be set.

When the CPU is notified that the sending is complete, the module stops sending

16.8.2 Receiving Audio Data from the Slave

1. Configure the used pins, SDI, BCLK, LRCLK

2. Set the I2S register 0x00, set it to slave mode to configure the transmission format, channel selection, data bit width, whether the left and right channels are on

Enable zero-crossing detection, and set the receive channel -rxen to open.

3. Set register 0x4 to enable the interrupt you want to use;

4. If DMA is used to transfer data, select the channel used in the DMA module, and configure the address and length of the transmitted data. and in I2S

DMA is enabled in module register 0x0, and the FIFO threshold is set. When the data is higher than the threshold range, it will automatically request DMA transfer

data.

5. Enable register 0x0[0], after the module detects valid BCLK and LRCLK, it will automatically collect data from SDI and store it in FIFO

middle. When the data in the FIFO is higher than the set threshold, the module will request the DMA to move the data to the memory, or send the RXTHIF

broken. RXDONE interrupt is generated when CPU turns off RXEN. The CPU can query how many bits are in the receive FIFO through register 0x10

data, how many bytes of valid data are there in the last word. The last remaining data is then processed according to the FIFO status.

16.8.3 Master Receives Audio Data

1. Configure the hardware used, SDI, SCLK, LRCLK

- 2. Refer to Section 2.4 to set the register 0x40000718 in the clock and reset module, and configure the working clock frequency;
- 3. Set the I2S register 0x00, set it as master mode, configure the transmission format, channel selection, data bit width, whether the left and right channels are enabled

Enable zero-crossing detection, and set the receive channel rxen to open.

4. Set register 0x4 to enable the desired interrupt;

5. If DMA is used to transfer data, select the channel used in the DMA module, and configure the address and length of the transmitted data. and in I2S

DMA is enabled in module register 0x0, and the FIFO threshold is set. When the data is higher than the threshold range, it will automatically request DMA transfer

data.

6. Enable register 0x0[0], the module will automatically send BCLK and LRCLK, and at the same time collect data from SDI and store it in FIFO. when

When the data in the FIFO is higher than the set threshold, the module will request the DMA to transfer the data to the memory, or send an RXTHIF interrupt. when

RXDONE interrupt is generated when CPU turns off RXEN. The CPU can query how many data are in the receiving FIFO through the register 0x10,

How many bytes of valid data are there in the last word. The last remaining data is then processed according to the FIFO status.

7. Turn off the i2s enable after the data reception is completed.

16.8.4 Slave sends audio data

- 1. Configure the used pins, SDO, BCLK, LRCLK
- 2. Set the I2S register 0x00, set it to slave mode, configure the transmission format, channel selection, data bit width, whether the left and right channels

Enable zero-crossing detection, and set the transmit channel txen to open.

- 3. Set register 0x4 to enable the desired interrupt;
- 4. If DMA is used to transfer data, select the channel used in the DMA module, and configure the address and length of the transmitted data. and in I2S

DMA is enabled in module register 0x0, and the FIFO threshold is set. When the data in FIFO is lower than the threshold range, it will automatically request DMA

Move data.

5. Write the data to be transmitted to the transmit FIFO address-register 0x10, enable the register 0x0[0], when the module detects a valid BCLK

and LRCLK, the module will automatically fetch data from FIFO and send it to SDO.

6. When the data in the FIFO is less than the set threshold, the module will request data from the DMA module, or send a TXTHIF interrupt.

7. When all the data in the FIFO is taken out, the TXDONE interrupt will be set. When the last frame is sent, the TXUDIF interrupt will be set.

When the CPU is notified that the sending is complete, the module stops sending

16.8.5 Full Duplex Mode

1. Configure the used pins, SDI, SDO, BCLK, LRCLK

2. If it is master mode, you need to configure clock frequency division.

3. Set the I2S register 0x00, configure the working mode (master/slave), configure the transmission format, channel selection, data bit width, left and right channels are

No Enable zero-crossing detection, and set the transmit channel txen and receive channel rxen to open.

4. Set register 0x4 to enable the desired interrupt;

5. If DMA is used to transfer data, select the channel used in the DMA module, and configure the address and length of the transmitted data. and in I2S

DMA is enabled in module register 0x0, and the FIFO threshold is set. When the data in FIFO is lower than the threshold range, it will automatically request DMA

Move data.

0X000c status register

6. Write the data to be transmitted to the transmit F	IFO address-register 0x10					
7. If it is master mode, enable the register 0x0[0], the module will start sending BCLK and LRCLK, and take out the data from the sending FIFO						
The data starts to be sent out from the SDO) port, and the data received	from the SDI is st	ored in the receive FIFO.			
8. If it is in slave mode, when the module detects v	alid BCLK and LRCLK, the m	odule will automa	atically fetch data from the sending FIFO			
Sent to SDO, and at the same time receive	data from SDI and store in re	acaiva FIFO				
 When the data in the transmit FIFO is less than t 	the set threshold, the module	will request data	trom the DMA module, or send a 1X1HIF interrupt.			
10. When the data in the FIFO is higher than the se	et threshold, the module will i	request the DMA	to transfer the data to the memory, or send an RXTHIF interrupt.			
11. When all the data in the TXFIFO is taken out, the taken out, t	he TXDONE interrupt will be	set. When the las	st frame is sent, the TXUDIF interrupt will be set.			
Notify the CPU that sending is complete, and th	e module stops sending.					
12. RXDONE interrupt is generated when CPU turn	ns off RXEN. The CPU can q	uery how many n	numbers are in the receiving FIFO through the register 0x10			
Data, how many bytes of valid data are ther	e in the last word. The last re	emaining data is t	hen processed according to the FIFO status.			
16.9 Register Description						
16.9.1 Register List						
	Table	120 I26 register I	int.			
t address name		300855	describe	reset value		
		access	Gescribe			
X0000 Control Register I2S Control RW/RO controls I2S related functions, see the following chapters for details; 0X0						
J004 interrupt mask register I2S_IMASK RW control turns on or off all interrupts in I2S 0X0000_03						
0008 Interrupt flag register I2S_INT_FLA	G	ot flag bit, can be used to check whether an interrupt is generated and	0X0000_0000			
			Clear related interrupts			
		RO is used to o	uery the relevant status of FIFO in the process of I2S communication	0X0000_0000		

state

I2S_STATUS

0X0010 Data transmission register I2	S_TX	The WO con	roller will send the data in it to the bus 0X0000_0000	
0X0014 Data receiving register I2S_R	x	The RO con	roller will receive the data on the bus into it 0X0000_0000	

16.9.2 Control Registers

Table 131 I2S Control Register

bit access		Instructions	reset value
[31:29] RO		RSV	7'h0
[28]	RW	mode selection	1'b0
		0 = master mode	
		1 = slave mode	
[27]	RW	Duplex mode selection	1'b0
		1 = Enable duplex mode	
		0 = disable duplex mode	
[26]	RW	Timeout count control bit, when this bit is set to 1 and the transmission process is forced to stop by the master device, no reception will occur	1'h0
		Completion (RXDONE) interrupt	
[25:24] RW	~	FORMAT	2'b0
	$\langle h \rangle$	Data Format Selection	
		2'b00: I2S data format	
		2'b01: MSB Justified data format	
		2'b10: PCM A sound data format	
		2'b11: PCM B sound data format	
[23]	RW	RXLCH	1'b0

		Channel receive enable control bit	
		1'b0: Enable receiving right channel data	
		1'b1: Enable receiving left channel data	
		Note: This bit is valid only when the mono mode of MONO_STEREO is selected	
[22]	RW	MONO_STEREO	1'b0
		Mono stereo select bit	
		1'b0: Data is transmitted in stereo format	
		1'b1: Data is transmitted in mono format	
[21]	RW	RXDMAEN	1'b0
		Receive DMA request enable bit	
		1'b0: Disable sending DMA requests	
		1'b1: Enable sending DMA requests	
		Note: When the transfer DMA request is enabled and the number of words in the RXFIFO is equal to or greater than RXTH,	
		The I2S controller will send a transfer request to the DMA until the RXFIFO is empty before stopping the DMA transfer.	
[20]	RW	TXDMAEN	1'ЬО
		Send DMA request enable bit	
	$\langle \rangle$	1'b0: Disable sending DMA requests	
		1'b1: Enable sending DMA requests	
		Note: When the transmit DMA request is enabled and the number of words in the TXFIFO is less than TXTH, the I2S controller	
		It will send a transfer request to the DMA until the TXFIFO is full before stopping the DMA transfer.	
[19]	WHERE	RXCLR	1'b0
		empty RXFIFO	

		1'b0: invalid	
		1'b1: Empty RXFIFO	
		Note: Write 1 to clear the RXFIFO, which is automatically cleared by hardware. Reading this bit always returns 0	
[18] WHERE		TXCLR	1'b0
		empty TXFIFO	
		1'b0: invalid	
		1'b1: Empty TXFIFO	
		Note: Write 1 to clear the TXFIFO, which is automatically cleared by hardware. Reading this bit always returns 0	
[17]	RW	LZCEN	1'b0
		Left channel zero cross detection enable control bit	
		1'b0: Stop left channel zero-crossing detection	
		1'b1: Enable left channel zero-crossing detection	
[16]	RW	RZCEN	1'b0
		Right channel zero cross detection enable control bit	
		1'b0: Stop right channel zero-crossing detection	
		1'b1: Enable right channel zero-crossing detection	
[15]	RW	Rx_clk_phase_sel	1'b0
		Receive clock phase selection	
		1'b0: default mode	
		Shown with the I2S bus timing mentioned above	
		1'b1: reverse mode	
		Shown in reverse form of the I2S bus timing mentioned above	

[14:12] RW		RXTH	3'h4
		RXFIFO Threshold	
		3'b000: set the threshold to 0 words	
		3'b000: set the threshold to 1 word	
		·	
		3'b111: set the threshold to 7 words	
		Note: The RXTHIF bit will be set when the existing words in the RXFIFO are equal to or more than the value of RXTH. this	
		You can choose to trigger RXDMA or I2S interrupt according to the setting	
[11:9] RW		ТХТН	3'h4
		TXFIFO Threshold	
		3'b000: set the threshold to 0 words	
		3'b000: set the threshold to 1 word	
		3'b111: Set the threshold to 7 characters	
		Note: The TXTHIF bit will be set when the word present in the TXFIFO is equal to or less than the value of TXTH. this	
		You can choose to trigger TXDMA or I2S interrupt according to the setting	
[8]	RW	Tx_clk_phase_sel	1'b0
		Select transmit clock phase mode	
		1'b0: default mode	
		Shown with the I2S bus timing mentioned above	
		1'b1: reverse mode	
		Shown in reverse form of the I2S bus timing mentioned above	

[7:6] RW		RSV	2'h0
[5:4] RW		WDWIDTH	2'b0
		Transmission word length setting bit	
		2'b00: word length 8 bits	
		2'b01: word length 16 bits	
		2'b10: word length 24 bits	
		2'b11: word length 32 bits	
[3]	RW	MUTE	1'b0
		Transmit mute enable flag bit	
		1'b0: Transfer data from shift register, normal operation mode	
		1'b1: Set the transmission data to 0 and mute the sound	
[2]	RW	RXEN	1'b0
		Receive enable flag	
		1'b0: Stop I2S data reception	
		1'b1: Enable I2S data reception	
[1]	RW	CHEN	1'b0
	\sim	transfer enable flag	
		1'b0: Stop I2S data transfer	
		1'b1: Enable I2S data transfer	
[0]	RW	I2SEN	1'b0
		I2S enable flag bit	
		1'b0: disable	

0		
Sector Contractor		

16.9.3 Interrupt Mask Register

Table 132 I2S interrupt mask register

bit access		Instructions	reset value
[31:10] RO		RSV	22'h0
[9]	RW	LZCIMASK	1'b1
		Left channel zero cross interrupt enable flag bit	
		1'b0: Interrupts are not enabled	
		1'b1: interrupt enable	
		When interrupts are enabled and a zero crossing is detected on the left channel, an interrupt is generated	
[8]	RW	RZCIMASK	1'b1
		Right channel zero cross interrupt enable flag bit	
		1'b0: Interrupts are not enabled	
		1'b1: interrupt enable	
		When interrupts are enabled and a zero crossing is detected on the right channel, an interrupt is generated	
[7]	RW	TXDONEMASK	1'b1
		Transmit complete interrupt enable bit	
		1'b0: Interrupts are not enabled	
		1'b1: interrupt enable	
		Interrupt is generated when the interrupt is enabled and the TXFIFO is empty	
[6]	RW	TXTHIMASK	1'b1

		TXFIFO threshold interrupt enable bit	
		1'b0: Interrupts are not enabled	
		1'b1: interrupt enable	
		When the interrupt is enabled and the number of data in the TXFIFO is equal to or less than TXTH, an interrupt will be generated	
[5]	RW	TXOVIMASK	1'b1
		TXFIFO overflow interrupt enable bit	
		1'b0: Interrupts are not enabled	
		1'b1: interrupt enable	
		Note: When the interrupt is enabled, the TXFIFO is full, and the CPU writes data to the TXFIFO again, the TXOVIF flag will be	
		will be set	
[4]	RW	THUDIMASK	1'Б1
		TXFIFO underflow interrupt enable bit	
		1'b0: Interrupts are not enabled	
		1'b1: interrupt enable	
		Note: When the TXFIFO underflow interrupt is enabled and TXUDIF is detected as 1, an underflow interrupt will be generated	
[3]	RW	RXDONEMASK	1'b1
	$\langle \rangle$	Receive complete interrupt enable flag bit	
		1'b0: Interrupts are not enabled	
		1'b1: interrupt enable	
		When the receive complete interrupt is enabled and the receive process is complete, a receive complete interrupt will be generated	
[2]	RW	RXTHIMASK	1'b1
		RXFIFO threshold interrupt enable flag bit	

		1'b0: Interrupts are not enabled	
		1'b1: interrupt enable	
		When the RXFIFO threshold interrupt is enabled and the number of data in the RXFIFO is equal to or more than the threshold value, a	
		Generate RX interrupt	
[1]	RW	RXOVIMASK	1'b1
		RXFIFO overflow interrupt enable bit	
		1'b0: Interrupts are not enabled	
		1'b1: interrupt enable	
		Note: When the RXFIFO outflow interrupt is enabled and TXOVIF is detected as 1, an overflow interrupt will be generated	
[0]	RW	RXUDIMASK	1'b1
		RXFIFO underflow interrupt enable bit	
		1'b0: Interrupts are not enabled	
		1'b1: interrupt enable	
		Note: When the RXFIFO underflow interrupt is enabled and TXUDIF is detected as 1, an underflow interrupt will be generated	

16.9.4 Interrupt Flag Register

Table 133 I2S interrupt flag register

bit acce	ess	Instructions	reset value
[31:13] RO		RSV	19'h0
[12]	RO	TXIF	1'b0
		I2S transmit interrupt flag	
		1'b0: No I2S interrupt occurred	

		1'b1: I2S has a transmit interrupt generated	
[11]	RO	RXIF	1'b0
		I2S receive interrupt flag	
		1'b0: No I2S interrupt occurred	
		1'b1: I2S has receive interrupt generated	
[10]	RO	I2SIF	1'b0
		I2S interrupt flag bit	
		1'b0: No I2S interrupt occurred	
		1'b1: I2S interrupt generated	
		Note: This bit will be set whenever there is an interrupt on either RX or TX	
[9]	RW	LZCIF	1'ЬО
		Left channel zero cross detection flag	
		This bit indicates that the next sample data sign bit of the left channel changes or all data bits are zero.	
		1'b0: No zero crossing detected	
		1'b1: Zero crossing detected	
		Note: Write 1 to clear the interrupt flag	
[8]	RW	RZCIF	1'b0
		Right channel zero cross detection flag	
		This bit indicates that the next sample data sign bit of the right channel changes or all data bits are zero.	
		1'b0: No zero crossing detected	
		1'b1: Zero crossing detected	
		Note: Write 1 to clear the interrupt flag	

[7]	RW	TXDONEIF	1'b0
		Transmit Complete Interrupt Flag	
		1'b0: This sending is not completed	
		1'b1: This sending is complete	
		Note: Write 1 to clear the interrupt flag	
[6]	RO	TXTIF	1'b0
		RXFIFO interrupt flag	
		1'b0: The number of words in the TXFIFO is greater than the threshold	
		1'b1: The number of words in the TXFIFO is less than or equal to the threshold.	
		Note: When the number of words in TXFIFO (TXCNT) is equal to or less than the threshold set by TXTH, this bit will be	
		It is set to 1 until the data is written to the TXFIFO and the value of TXCNT is greater than the value of TXTH, it will not	
		changes back to 0.	
[5]	RW	TXOVIF	1'ЬО
		TXFIFO overflow interrupt flag	
		1'b0: TXFIFO overflow interrupt did not occur	
		1'b1- TXEIEO overflow interrupt occurred	
	A		
1		Note: Write 1 to clear the interrupt flag	
[4]	RW	THUDIF	1'b0
		TXFIFO underflow interrupt flag	
		1'b0: TXFIFO underflow interrupt did not occur	
		1'b1: TXFIFO underflow interrupt occurred	
		Note: Write 1 to clear the interrupt flag	

[3]	RW	RXDONEIF	1'b0
		Receive complete interrupt flag	
		1'b0: This receive is not complete	
		1'b1: This reception is complete	
		Note: Write 1 to clear the interrupt flag	
[2]	RO	RXTHIF	1'b0
		RXFIFO interrupt flag	
		1'b0: The number of words in the RXFIFO is less than the threshold	
		1'b1: The number of words in the RXFIFO is equal to or greater than the threshold.	
		Note: When the number of words in RXFIFO is equal to or more than the threshold set by RXTH, this bit will be set to 1,	
		It will not change back to 0 until the data in RXFIFO is read and the value of RXCNT is less than the value of RXTH.	
[1]	RW	RXOVIF	1'b0
		RXFIFO overflow interrupt flag	
		1'b0: RXFIFO overflow interrupt did not occur	
		1'b1: RXFIFO overflow interrupt occurred	
		Note: Write 1 to clear overflow interrupt	
[0]	RW	RXUDIF	1'60
	1	RXFIFO underflow interrupt flag	
		1'b0: RXFIFO underflow interrupt did not occur	
		1'b1: RXFIFO underflow interrupt occurred	
		Note: Write 1 to clear underflow interrupt	

16.9.5 Status Register

bit acc	ess	Instructions	reset value
[31:10] RO		RSV	22'h0
[9:8]	RO	YOU WILL BE VALID	2'h0
		The number of bytes available in the last word.	
		2'b00: After reception is complete, all bytes in the RXFIFO are available	
		2'b01: 1 byte is available in the RXFIFO after reception is complete	
		2'b10: 2 bytes are available in the RXFIFO after reception is complete	
		2'b11: 3 bytes are available in the RXFIFO after reception is complete	
[7:4]	RO	тхт	4'h0
		Record the number of words in TXFIFO at the current moment.	
		4'b0000: no data	
		4'b0001: 1 word	
		4'b1000: 8 words	
[3:0]	RO	RXCNT	4'h0
		Record the number of words in the RXFIFO at the current moment.	
		4'b0000: no data	
		4'b0001: 1 word	
		4'b1000: 8 words	

Table 134 I2S Status Register

16.9.6 Data Transmit Register

Table 135 I2S data transmission register

bit acco	ess	Instructions	reset value
[31:0] WO		TXFIFO	32'h0
		I2S has a built-in 8-word FIFO for storing data to be sent. Write a word to TXFIFO at a time,	
		The word in the TXFIFO is increased by one. The I2S controller will automatically send out the word that enters the TXFIFO first.	

16.9.7 Data Receive Register

Table 136 I2S Data Receive Register

bit acce	ess	Instructions	reset value
[31:0] RO		RXFIFO	32'h0
		I2S has a built-in 8-word FIFO for storing received data. Read from the RXFIFO one at a time	
	$\langle \rangle$	word, there will be one less word in the RXFIFO.	

17 UART module

17.1 Function overview

UART is a universal serial data bus used for asynchronous communication. The bus supports bidirectional communication, enabling full-duplex transmission and reception.

W800 has a total of 6 groups of common UART ports, through the combination of fine clock frequency division, various baud rate settings can be realized, and the maximum support is 2Mbps

communication rate. W800 UART can work with hardware DMA to realize high-efficiency asynchronous transmission of data.

17.2 Main features

 $\ddot{\mathrm{y}}$ Comply with APB bus interface protocol, full-duplex asynchronous communication mode

ÿ Support interrupt or polling mode

ÿ Support DMA Byte transmission mode, send and receive each 32-byte FIFO

ÿ Programmable baud rate, maximum support 2Mbps

ÿ 5-8bit data length, and parity polarity can be configured

ÿ 1 or 2 stop bits configurable

ÿ Support RTS/CTS flow control

ÿ Support Break frame sending and receiving

ÿ Support Overrun, parity error, frame error, rx break frame interrupt indication

17.3 Functional description

17.3.1 UART Baud Rate

In asynchronous communication, since both sides do not have the same clock source as a reference, both parties need to send and receive data according to the negotiated baud rate. W800

Fine baud rate control can be achieved through the baud rate setting register BAUD_RATE_CTRL register

BAUD_RATE_CTRL[15:0] is named ubdiv, BAUD_RATE_CTRL[19:16] is named ubdiv_frac, the wave that needs to be set

Baudrate, the calculation formula is as follows:

ubdiv = apbclk / (16 * baudrate) - 1

//Take an integer

ubdiv_frac = (apbclk % (baud rate * 16)) / baud rate // lock

Take APB clock 40MHz, baud rate 19200bps as an example:

ubdiv = 40000000 / (16 * 19200) - 1 = 129

ubdiv_frac = (40000000 % (19200* 16)) / 19200 = 3

Calculate the APB clock 40MHz according to the above formula, and the baud rate is 19200bps, the baud rate register should be set as:

BAUD_RATE _CTRL = (3<<16) | 129 = 0x0003_0081ÿ

17.3.2 UART Data Format

ÿData length

The UART of W800 supports configurable data length of 5bit, 6bit, 7bit and 8bit. The definition of data length is as follows:

Figure 28 UART data length

Normal UART communication is composed of 1bit start bit, 1bit stop bit plus the middle data bit, and the middle data bit can be configured,

W800 supports configurable data bit lengths of 5bit, 6bit, 7bit, and 8bit, and the data bit length can be selected according to actual applications.

ÿ stop bit

The UART of W800 supports configurable 1bit stop bit and 2bit stop bit, which can be configured according to actual needs, as follows:

The function of the parity bit is to check the correctness of the data, W800 can set odd parity, even parity and no parity.

Odd parity calculation method: If the number of 1s in the current data is odd, the odd parity bit is 0, and if the number of 1s in the current data is even

Several, the odd parity bit is 1. In short, an odd number of 1s is guaranteed.

Calculation method of even parity: If the number of 1s in the current data is odd, the even parity bit is 1, and if the number of 1s in the current data is even

Several, the even parity bit is 0. In short, an even number of 1s is guaranteed.

8bit single data length + odd check

Figure 30 UART parity bit

17.3.3 UART hardware flow control

W800 UART supports RTS/CTS hardware flow control. The main purpose of flow control is to prevent the UART fifo

The data is lost because the software is too late to process it. RTS and CTS are used correspondingly, as shown in the figure below:

Figure 31 UART hardware flow control connection

The hardware flow control of W800 is controlled by AUTO_FLOW_CTRL register. When hardware flow control AUTO_FLOW_CTRL[0] is 1

, W800 will perform flow control settings according to the number of data in rxfifo set by AUTO_FLOW_CTRL[4:2], if it is greater than the set number,

When RTS is pulled high, other devices will no longer send data to W800; when the number is less than the set number, RTS is pulled low, and other devices continue to send data

according to. When AUTO_FLOW_CTRL[0] is 0, the software sets the level of RTS through AUTO_FLOW_CTRL[1].

When W800 sends data, it can judge whether the current CTS has changed through interrupts, and query the CTS status through FIFO_STATUS[12].

To decide whether to continue sending data to other devices.

17.3.4 UART DMA transfer

The UART of W800 supports DMA transmission mode, and the DMA_CTRL register in the UART register list needs to be configured for DMA transmission.

device to turn on the DMA enable of the UART. At the same time, you need to configure UART_FIFO_CTRL to configure how many bytes are left in txfifo and rxfifo.

Send DMA transfer.

DMA source or destination address is set to TX_DATA_WINDOW or RX_DATA_WIDNOW, other DMA register setting parameters

Check the DMA register chapter.

Note: UART DMA transfer can only be set to Byte mode, and half_word and word transfer modes are not supported.

17.3.5 UART Interrupts

UART supports interrupt operation mode, including fifo empty, fifo reaches the set trigger value, CTS changes, errors, etc. will generate UART interrupts,

The required interrupt can be set through the INT_MASK register.

When the UART interrupt is generated, the current interrupt status and the cause of the interrupt can be queried through INT_SRC. Write 1 to clear 0 by software.

17.4 Register Description

17.4.1 Register List

Table 137 UART register list

offset address	name	abbreviation	access	describe	reset value
0X0000 Data flow	control register	UART_LINE_CTRL	Data form	at setting for RW uart communication	0X0000_000B
0X0004 Automati	c hardware flow control register AUTC)_FLOW_CTRL RW uart rts/cts ha	rdware flow	control setting 0X0000_0014	
0X0008	DMA Setup Register	DMA_CTRL	RW uart d	ma transfer mode setting	0X0000_0024
0X000C	FIFO Control Register	UART_FIFO_CTRL	RW set ua	rt fifo trigger level	0X0000_0014
0X0010 Baud rate	e control register	BAUD_RATE_CTRL	RW set ua	rt communication baud rate	0X0003_0081
0X0014 interrupt	nask register	INT_MASK	RW Set th	e interrupt 0X0000_01FF that uart needs to use	
0X0018 Interrupt	Status Register	INT_SRC	RW uart ir	terrupt status indicator	0X0000_0000

0X001C	FIFO status register	FIFO_STATUS	RW fifo st	atus, cts status query	0X0000_1000
0X0020	TX start address register TX_DAT	A_WINDOW WO			0X0000_0000
0X0024 Reserve	4				
0X0028 Reserve	4				
0X002C Reserve	d				
0X0030	RX start address register RX_DA	A_WINDOW RO			0X0000_0000
0X0034 Reserve	þ				
0X0038 Reserve	н			• ()'	
0X003C Reserve	d				

17.4.2 Data Flow Control Register

bit acc	ess	Instructions	reset value
[31: 8]		reserve	
[7]	RW	uart_rx_enable	1'ЬО
[/]		Receive enable, active high	
4	RW	uart_tx_enable	1'b0
[σ]		Transmit enable, active high.	
		send break enable	1'b0
[5]	RW	Send a break packet. Uart will send a break packet after it is set, and the sending is completed	
		Automatically deared to 0 alternands.	
[4]	RW	parity polarity	1'b0

Table 138 UART data flow control register

		1'b0: even parity	
		1'b1: odd parity	
[0]	RW	parity one	1'b1
[3]		Parity check enable, high effective	
		number of stop bits	1'b0
[2]	RW	1'b0: 1 stop bit	\bigcirc
		1'b1: 2 stop bits	,
		uart bit length.	2'h3
		2'h0ÿ5bit	
[1 : 0] RW		2'h1ÿ6bit	
		2'h2ÿ7bit	
		2'h3ÿ8bit	

17.4.3 Automatic Hardware Flow Control Registers

Table 139 UART automatic hardware flow control register

bit access		Instructions	reset value
[31: 5]	1	reserve	
[4 : 2] RW		RTS trigger level	3'h5
		When afc_enable is active, decide when RTS needs to be deasserted.	
		3'h0: rxfifo has more than 4 bytes	
		3'h1: rxfifo has more than 8 bytes	

		3'h2: rxfifo has more than 12 bytes	
		3'h3: rxfifo has more than 16 bytes	
		3'h4: rxfifo has more than 20 bytes	
		3'h5: rxfifo has more than 24 bytes	
		3'h6: rxfifo has more than 28 bytes	
		3'h7: rxfifo has more than 31 bytes	\bigcirc
		RTS set	1'b0
[1]	RW	When AFC_enable is invalid, software can complete receive flow control by setting this bit. when	
		This bit is don't care when AFC_enable is active.	
		afc enable	1'b0
[0]	RW	1'b1: Valid, the reception condition rts is generated using rts_trigger_level control.	

17.4.4 DMA Setup Register

Table 140 UART DMA Setup Register

bit access		Instructions	reset value
[31: 8]		reserve	
	\mathcal{S}	rxfifo timeout num	5'h04
		If the data in rxfifo is less than rxfifo_trigger_level, if there are no	
[7 : 3] RW		When new data is received, an rxfifo timeout interrupt is generated.	
		After the timing function is enabled, no matter whether it is the first timing or the last timing is completed, only when at least 1	
		The timer starts after a packet	
[2]	RW	rxfifo timeout en	1'b1

		rxfifo timeout enable	
		rx dma enable	1'b0
[1]	RW	Receive DMA enable, active high.	
		0: Indicates that the receiving process uses interrupts.	
		tx dma enable	1'b0
[0]	RW	Transmit DMA enable, active high.	\bigcirc
		0: Indicates that the sending process uses interrupts.	1

17.4.5 FIFO Control Register

Table 1	41 UART	FIFO Control	Register
			•

bit acc	ess	Instructions	reset value
[31: 6]		reserve	
		rxfifo trigger level	2'h1
		When the number of data bytes in rxfifo is greater than or equal to this value, an interrupt is triggered, or rxdma req is triggered.	
[5 : 4] RW		2'h0ÿ1byte	
		2'h1ÿ4byte	
	$\langle h \rangle$	2'h2ÿ8byte	
		2'h3ÿ16byte	
		txfifo trigger level	2'h1
[3 : 2] RW		When the number of data bytes in txfifo is less than or equal to this value, an interrupt is triggered, or txdma req is triggered.	
		2'h0ÿempty	
		2'h1ÿ4byte	

		2'h2ÿ8byte	
		2'h3ÿ16byte	
[1]	RW	rxfifo reset	1'b0
		Reset rxfifo, clear the rxfifo status	
[0]	RW	txfifo reset	1'b0
		Reset txfifo, clear txfifo status	\bigcirc

17.4.6 Baud Rate Control Register

Table 142 UART baud rate control register

bit acc	ess	Instructions	reset value
[31:20]		reserve	
		ubdiv_frac	4'h3
[19:16] RW		Indicates the fractional part of the quotient of the system clock divided by 16 times the baud rate clock. The specific value is frac×16.	
		(Refer to Chapter 2.3.2, Baud Rate Calculation Method)	
[15: 0] RW		ubdiv	16'h81
		Subtract 1 from the integer part of the quotient of the system clock divided by 16 times the baud rate clock.	
	$\langle h \rangle$	The default system clock is 40MHz and the baud rate is 19200.	
		(Refer to Chapter 2.3.2, Baud Rate Calculation Method)	

17.4.7 Interrupt Mask Register

Table 143 UART interrupt mask register

Dit access instructions reset value	bit access	s Instructions	reset value
-------------------------------------	------------	----------------	-------------

[31: 9]		reserve	
[8]	RW	overrun error int mask, rxfifo overflow interrupt mask bit, effective high.	1'b1
[7]	RW	parity error int mask, parity check interrupt mask bit, high effective.	1'b1
[6]	RW	frame error int mask, data frame error interrupt mask bit, high effective.	1'b1
[5]	RW	break detect int mask, break signal detection interrupt mask bit, high effective.	1'b1
[4]	RW	cts changed indicate mask, CTS signal change interrupt mask bit, high effective.	1'b1
[3]	RW	rxfifo data timeout int mask, rxfifo receive data timeout interrupt mask bit, high effective.	1'b1
[2]	RW	rxfifo trigger level int mask, rxfifo trigger level interrupt mask bit, effective high.	1'b1
[1]	RW	txfifo trigger level int mask, txfifo trigger level interrupt mask bit, effective high.	1'b1
[0]	RW	txfifo empty int mask, txfifo is an empty interrupt mask bit, high effective.	1'b1

17.4.8 Interrupt Status Register

bit acco	ess	Instructions	reset value
[31: 9]		reserve	
[8]	RW	overrun error rxtifo overflowed.	1'b0
		Software actively writes 1 to clear 0.	
[7]	RW	parity error	1'b0
		The check digit of the received packet is wrong.	
		In case of DMA, this interrupt will still be generated. But DMA operations don't care about this interrupt.	
		Software actively writes 1 to clear 0.	

Table 144 UART interrupt status register

		frame error	1'b0
[6]		Received packet with wrong stop bit.	
	NW	In case of DMA, this interrupt will still be generated. But DMA operations don't care about this interrupt.	
		Software actively writes 1 to clear 0.	
		break detect	1'b0
[5]	RW	A break packet is received.	
[0]		In case of DMA, this interrupt will still be generated. But DMA operations don't care about this interrupt.	
		Software actively writes 1 to clear 0.	
		cts changed	1'b0
[4]	RW	This interrupt is generated when the cts signal changes.	
		Software actively writes 1 to clear 0.	
		rxfifo data timeout	1'b0
[3]	RW	The data length in rxfifo is less than rxfifo trigger level but no data is received for N data cycles,	
[0]		An interrupt is generated.	
		Software actively writes 1 to clear 0.	
		rxfifo trigger level interrupt	1'b0
	\sim	When the number of data in rxfifo changes from less than the number specified in rxfifo trigger level to greater than or equal to the number	
[2]	RW	, this interrupt is generated.	
		At this time, the current data frame size should be determined according to the rxfifo count.	
		Software actively writes 1 to clear 0.	
[1]	RW	txfifo trigger level interrupt	1'ЬО
[1]		When the number of data in txlifo changes from greater than the number specified in txlifo trigger level to less than or equal to the number	

		, an interrupt is generated.	
		Software actively writes 1 to clear 0.	
		tx fifo empty interrupt	1'b0
[0]	RW	This interrupt is generated when the current packet has been sent and the txfifo is empty.	
		Software actively writes 1 to clear 0.	

17.4.9 FIFO Status Register

bit acc	ess	Instructions	reset value
[31:13]		reserve	
[12]	RW	cts status	1'b0
		Current state of cts	
[11: 6] RW		rxfifo count	6'h0
		The number of data in rxfifo	
[5 : 0] RW		txfifo count	6'h0
		The number of data in txfifo	

Table 145 UART FIFO Status Register

17.4.10TX Start Address Register

Table 146 UART TX start address register

bit acc	ess	Instructions	reset value
[31:0] WO		tx data window	32'h0
		Send data start address.	

	Note: uart only supports byte operation when sending and receiving data. When using burst transmission, it is possible to use word	
	The method of incrementing section address, the design supports up to 16-burst operation, that is, 16byte. So send from /	
	A total of 16 bytes (4 words) after the receiving start address are reserved as the sending/receiving data window.	

17.4.11RX Start Address Register

Table 147 UART RX start address register

bit acc	ess	Instructions	reset value
		rx data window	32'h0
		Receive data start address.	
[31: 0] RO		Note: uart only supports byte operation when sending and receiving data. When using burst transmission, it is possible to use word	
		The method of incrementing section address, the design supports up to 16-burst operation, that is, 16byte. So send from /	
		A total of 16 bytes (4 words) after the receiving start address are reserved as the sending/receiving data window.	

18 UART&7816 modules

18.1 Function overview

UART&7816 module is compatible with UART function and 7816 interface function.

W800 supports 1 group of UART&7816 multiplexing interface (uart2). When used as UART, it can

Realize the setting of various baud rates, and the maximum communication rate can support 2Mbps.

W800 UART&7816 interface can cooperate with hardware DMA to realize high-efficiency data transmission.

18.2 Main Features

ÿ Conforms to the APB bus interface protocol, supports UART asynchronous full-duplex and 7816 asynchronous half-duplex communication methods;

ÿ Support interrupt or polling mode;

ÿ Support DMA Byte transmission mode, send and receive each 32-byte FIFO;

ÿ Serial port function:

ÿ Programmable baud rate, maximum support 2Mbps

 \ddot{y} 5-8bit data length, and parity polarity can be configured

ÿ 1 or 2 stop bits configurable

- ÿ Support RTS/CTS flow control
- ÿ Support Break frame sending and receiving

ÿ Support Overrun, parity error, frame error, rx break frame interrupt indication

ÿ 7816 interface function:

ÿ Compatible with ISO-7816-3 T=0.T=1 mode

ÿ Compatible with EVM2000 protocol

ÿ Configurable guard time (11 ETU-267 ETU)

ÿ Forward/reverse agreement, software configurable

ÿ Support sending/receiving parity check and retransmission function

ÿ Support 0.5 and 1.5 stop bits configurable

18.3 UART Functional Description

Refer to Chapter 16 UART Function Module Description

18.4 7816 Functional Description

18.4.1 Introduction to 7816

ISO7816 is an international standard smart card protocol, which stipulates the physical characteristics, size and interface, electrical signal and transmission protocol, command

Orders, safety and other information.

W800 mainly implements the part of ISO 7816-3 electrical signal and transmission protocol, and supports T0 and T1 cards. Through the 7816 interface of W800

The user can not care about the signal communication logic of the clock and data, and can directly interact with the smart card for data and commands. About Chi

The user needs to refer to the ISO7816-4 protocol to realize the data and command interaction mode of the energy card.

18.4.2 7816 interface

W800 mainly integrates the clock and data interfaces of the smart card to realize the communication electrical signal logic of data and commands. The actual smart card should

In use, there are three signals: RST, VCC, and GND. RST can be controlled by ordinary GPIO, mainly when the smart card is powered on and reset.

use. VCC can be directly connected to a 3.3V power supply, or through GPIO and other circuits to control the on-off of the smart card VCC.

Figure 32 7816 connection diagram

18.4.3 7816 configuration

When used as a 7816 interface, relevant configurations are required:

ÿ Set the working mode of the interface, set UART_LIN_CTRL[24] to 1, and select the current interface as 7816 mode;

ÿ Set 7816 MSB or LSB transmission mode, UART_LIN_CTRL[3] is set to 1, through UART_LIN_CTRL[3]

Select whether the 7816 interface is MSB mode (bit7 is transmitted first), or LSB mode (bit0 is transmitted first);

ÿ Set the stop bit, UART_LIN_CTRL[2] can select 0.5 or 1.5 stop bits for the smart card;

ÿ Select the card type, UART_LIN_CTRL[8] can select T0 card or T1 card;

ÿ Configure the smart card communication timeout time, set the timeout time by WAIT_TIME, when receiving data and not receiving data after timeout

timeout interrupt is generated.

18.4.4 7816 Clock Configuration

The smart card clock refers to the clock provided to the smart card through the CLK pin, which is set by BAUD_RATE_CTRL[21:16] and calculated

Methods as below:

___ ÿ 1 clk_div = 2 ×

fsc_clk: CLK that needs to be provided to the smart card;

fclk_apb: system APB bus clock;

clk_div: The clock division factor that needs to be set to BAUD_RATE_CTRL[21:16]

Because clk_div can only take integers, in order to reduce errors, we'd better adopt the rounding calculation method, and the rounding calculation in C language will lose

The decimal part is dropped, and the rounding conversion method adopted by the C language is as follows:

clk_div = (fclk_apb + fsc_clk)/(2 * fsc_clk) - 1;

18.4.5 7816 rate setting

There is a time unit ETU in the smart card, and the smart card transmits data and commands according to this time unit. ETU is set by

BAUD_RATE_CTRL[15: 0] to set, the calculation method is as follows:

1 1etu = × ____

f: CLK of our smart card;

Both F and D are parameters given by the smart card.

In fact, the ubdiv of BAUD_RATE_CTRL[15: 0] we need to set is F/D, the above formula is just for calculating ETU

home reference. When we actually set it, we only need to set ubdiv = F/D. F and D can be queried from the table below.

rubic r rruna j (maxi)								
Bits 8 to 5	0000	0001	0010	0011	0100	0101	0110	0111
Fi	372	372	558	744	1116	1488	1860	RFU
f(max.) MHz	4	5	6	8	12	16	20	—
-	4000	1001			4400			
Bits 8 to 5	1000	1001	1010	1011	1100	1101	1110	1111
Fi	RFU	512	768	1024	1536	2048	RFU	RFU
f(max.) MHz	—	5	7,5	10	15	20	-	_

Table 7 — Fi and f (max.)

According to Table 8, bits 4 to 1 encode Di.

I able 8 — Di								
Bits 4 to 1	0000	0001	0010	0011	0100	0101	0110	0111
Di	RFU	1	2	4	8	16	32	64
Bits 4 to 1	1000	1001	1010	1011	1100	1101	1110	1111
Di	12	20	RFU	RFU	RFU	RFU	RFU	RFU

Table 148 7816 rate setting

(Refer to the protocol document ISO_IEC_FDIS_7816-3_(E).PDF)

18.4.6 7816 power-on reset

Figure 33 7816 power-on reset sequence

The above figure is the timing diagram of smart card power-on reset. The initial state of CLK and IO is low, and we need to configure it as GPIO mode and pull it low. VCC pull

After high, CLK and IO are configured as 7816 mode and controlled by 7816. Finally, we need to manually pull the RST pin high to complete the reset process.

Procedure. The configuration steps are as follows:

ÿ I/O, CLK, and RST are configured as normal GPIO mode and kept low;

ÿ Set 7816 to T=0 mode;

ÿ Control VCC power-on through GPIO;

 $\ddot{\text{y}}$ Configure I/O, CLK as 7816 mode, and 7816 drives clock and data;

ÿ Configure 7816 clock frequency and allow clock output;

ÿ Set the RST pin and wait to receive ATR data. If no ATR data is received within 40000 clocks, the inactivation process will be executed.

The card is deactivated.

18.4.7 7816 Warm Reset

Figure 34 7816 warm reset

As shown in the figure above, the process of warm reset is very simple. In normal working mode, just pull the RST pin down for 400 cycles. The configuration steps are as follows:

ÿ Keep VCC powered on;

ÿ Pull down the RST pin for at least 400 clock cycles;

ÿ Pull the RST pin high, waiting to receive ATR data, if no ATR data is received within 40000 clocks, execute the inactivation process,

The card is deactivated.

18.4.8 7816 Inactivation process

As shown in the figure above, after RST is pulled low, CLK and IO need to be configured as normal IO mode and pulled low, and finally turn off the VCC power supply, the operation steps

as follows:

ÿ Keep VCC powered on;

ÿ Pull down the RST pin;

ÿ Configure CLK and IO as GPIO mode and pull it low;

ÿ Control VCC power-down through GPIO;

18.4.9 7816 data transmission

The timing of data transmission of 7816 has been completed by W800 hardware, no user operation is required. If users want to know the specific content of this part, please

Refer to the provisions in the ISO7816-3 protocol.

Figure 36 7816 data transmission

18.4.10UART&7816 DMA transfer

The UART&7816 of W800 supports DMA transmission mode, and the UART&7816 register list needs to be configured for DMA transmission.

DMA_CTRL register to enable DMA of UART. At the same time, you need to configure UART_FIFO_CTRL to configure txlifo and rxlifo

How many bytes are left to trigger a DMA transfer.

DMA source or destination address is set to TX_DATA_WINDOW or RX_DATA_WIDNOW, other DMA register setting parameters

Check the DMA register chapter.

Note: UART&7816 DMA transmission can only be set to Byte mode, and half_word and word transmission modes are not supported.

18.4.11 UART&7816 interrupt

UART&7816 supports interrupt operation mode, including fifo empty, fifo reaches the set trigger value, CTS change, error, etc. will be generated

UART&7816 interrupt, you can set the required interrupt through INT_MASK register.

When the UART&7816 interrupt is generated, you can query the current interrupt status and the cause of the interrupt through INT_SRC. software write 1 clear

0ÿ

18.5 Register Description

18.5.1 Register List

Table 149 UART&7816 register list

offset address	name	name abbreviation		describe	reset value
0X0000 Data flow	control register	UART_LINE_CTRL	RW uart&	7816 communication data related equipment	0X0033_520B
0X0004 Automatic	hardware flow control register AUTO	FLOW_CTRL RW uart rts/cts hard	ware flow co	ntrol setting 0X0000_0014	
0X0008	DMA Setup Register	DMA_CTRL	RW uart&	7816 dma transfer mode setting 0X0000_0024	
0X000C	FIFO Control Register	UART_FIFO_CTRL	RW set ua	rt&7816 fifo trigger level 0X0000_0014	
0X0010 Baud rate	control register	BAUD_RATE_CTRL	RW set ua	rt baud rate, 7816 clock 0X0003_0082	
0X0014 interrupt r	nask register	INT_MASK	RW set ua	rt&7816 need to use	0X0000_03FF

0X0018 Interrupt	Status Register	INT_SRC	RW uart&	7816 interrupt status indicator	0X0000_0000
0X001C	FIFO status register	FIFO_STATUS	RW fifo st	atus, cts status query	0X0000_0000
0X0020	TX start address register TX_DAT.	A_WINDOW WO			0X0000_0000
0X0024 Reserve	d				
0X0028 Reserve	d				
0X002C Reserve	d				
0X0030	RX start address register RX_DAT	A_WINDOW RO			0X0000_0000
0X0034 Reserve	d			• () /	
0X0038 Reserve	d		~		
0X003C Reserve	d				
0X0040	7816 guard time register GUARD_	TIME	RW 7816	Guard time between data	0X0000_0000
0X0044	7816 timeout register WAIT_TIME		RW 7816	Receive data timeout	0X0007_8000

18.5.2 Data Flow Control Register

Table 150 UART&7816 data flow control register

bit acc	ess	Instructions	reset value
[31:25]	$\langle \rangle$	reserve	
	1	sc_mode	1'b0
[24]	RW	1'b0: uart mode	
		1'b1: 7816 mode	
[23]		7816 card T0 mode rx_retrans_en	1'b0
		1'b0: Rx automatic retransmission is invalid	

		1'b1: Rx automatic retransmission enable	
[22:20] RW		7816 card T0 mode rx_retrans_cnt	3'h3
		7816 card T0 mode tx_retrans_en	1'b0
[19]	RW	1'b0: Tx automatic retransmission is invalid	
		1'b1: Tx automatic retransmission enable	
		7816 card T0 mode tx_retrans_cnt	3'h3
[18:16] RW		tx automatic retransmission times	
		The minimum MIN_BGT (Min Block Guard Time) of the 7816 card	5'ha
		Min Block Guard Time calculation: 10+stop bits (default 2 bits)+configuration value MIN_BGT	
		Note:	
		T=0: The minimum time interval between the falling edges of the start bit of two consecutive characters sent and received in opposite directions	
[15:11] RW		Cannot be less than 16 ETUs. must be able to correctly interpret the falling edge of its start bit received and the last word transmitted	
		The interval between the falling edges of the section start bit is 15 ETU characters.	
		T=1: The minimum time interval between the falling edges of the start bit of two consecutive characters sent and received in opposite directions	
		(Block Guard Time, BGT) must be 22 ETUs. must be able to correctly interpret the received start bit under its	
		The falling edge and the falling edge of the start bit of the last transmitted byte are separated by characters received within 21 ETUs.	
	\sim	7816 Card Clock Control Configuration	1'ЬО
[10]	RW	1'b0: Generate card clock output when configured as card mode, otherwise card clock output is invalid	
		1'b1: clock stopped	
		7816 Whether to receive data when the parity of the card is wrong	1'b1
[9]	RW	1'b0: do not receive	
		1'b1: receive	

		T0/T1 mode configuration of 7816 card,	1'b0
[8]	RW	1'b0: T0 mode	
		1'b1: T1 mode	
[7]	RW	uart_rx_enable	1'b0
[/]		In uart/7816 mode, receive enable, active high	
[6]	RW	uart_tx_enable	1'b0
[0]		In uart/7816 mode, transmit enable, active high.	,
		send break enable	1'b0
[5]	RW	Send a break packet. Uart will send a break packet after it is set, and the sending is completed	
		Atomatically cleared to 0 alternands.	
		parity polarity (UART mode)	1'b0
		1'b0: even parity	
[4]	RW	1'b1: odd parity	
		Forward and reverse (7816 mode)	
		1'b0: LSB (b0 bit) is transmitted first	
		1'b1: MSB (b7 bit) transmitted first	
[3]	RW	parity enable, active high (UART mode)	1'b1
		Number of stop bits (UART mode)	1'b0
		1'b0: 1 stop bit	
[2]	RW	1'b1: 2 stop bits	
		Number of stop bits (7816 mode)	
		1'b0: 0.5 stop bits	

	1'b1: 1.5 stop bits	
	uart bit length (UART mode)	2'h3
	2'h0ÿ5bit	
[1 : 0] RW	2'h1ÿ6bit	
	2'h2ÿ7bit	
	2'h3ÿ8bit	,
201	• () '	

18.5.3 Automatic Hardware Flow Control Registers

Table 151 UART&7816 automatic hardware flow control register

bit acc	ess	Instructions	reset value
[31: 5]		reserve	
		RTS trigger level (UART mode)	3'h5
		When afc_enable is active, decide when RTS needs to be deasserted.	
	<u>.</u>	3'h0: rxfifo has more than 4 bytes	
		3'h1: rxfifo has more than 8 bytes	
[4 : 2] RW		3'h2: rxfifo has more than 12 bytes	
		3'h3: rxfifo has more than 16 bytes	
		3'h4: rxfifo has more than 20 bytes	
		3'h5: rxfifo has more than 24 bytes	
		3'h6: rxfifo has more than 28 bytes	
		3'h7: rxfifo has more than 31 bytes	

		RTS set (UART mode)	1'b0
[1]	RW	When AFC_enable is invalid, software can complete receive flow control by setting this bit. when	
		This bit is don't care when AFC_enable is active.	
[0]	RW	afc enable (UART mode)	1'b0
		The reception condition rts is generated using rts_trigger_level control, high effective.	

18.5.4 DMA Setup Register

18.5.4 DMA Setup Register Table 152 UART&7816 DMA setting register					
bit acc	ess	Instructions	reset value		
[31: 8]		reserve			
		rxfifo timeout num (UART mode)	5'h4		
		If the data in rxfifo is less than rxfifo_trigger_level, if there are no			
[7 : 3] RW		When new data is received, an rxfifo timeout interrupt is generated.			
		After the timing function is enabled, no matter whether it is the first timing or the last timing is completed, only when at least 1			
		The timer starts after a packet			
		rxfifo timeout en (UART&7816 mode)	1'b1		
[2]	RW	rxfifo timeout enable, active high			
	1	rx dma enable (UART&7816 mode)	1'b0		
[1]	RW	Receive DMA enable, active high.			
		0 indicates that the receive process uses interrupts.			
		tx dma enable (UART&7816 mode)	1'b0		
[0]	KW	Transmit DMA enable, active high.			

Table 152 UART&7816 DMA setting register

0 indicates that the sending process uses interrupts.			
		0 indicates that the sending process uses interrupts.	

18.5.5 FIFO Control Register

Table 153 UART&7816 FIFO control register

bit acc	ess	Instructions	reset value
[31: 6]		reserve	
[5 : 4] RW		rxfifo trigger level(UART&7816 mode)	2'h1
		When the number of data bytes in rxfifo is greater than or equal to this value, an interrupt is triggered, or rxdma req is triggered.	
		2'h0ÿ1byte	
		2'h1ÿ4byte	
		2'h2ÿ8byte	
		2'h3ÿ16byte	
[3 : 2] RW		txfifo trigger level(UART&7816 mode)	2'h1
		When the number of data bytes in txfifo is less than or equal to this value, an interrupt is triggered, or txdma req is triggered.	
		2'h0ÿempty	
		2'h1ÿ4byte	
	$\langle h \rangle$	2'h2ÿ8byte	
		2'h3ÿ16byte	
[1]	RW	rxfifo reset(UART&7816 mode)	1'b0
		Reset rxfifo, clear the rxfifo status	
[0]	RW	txfifo reset(UART&7816 mode)	1'b0
		Reset txfifo, clear txfifo status	

18.5.6 Baud Rate Control Register

bit acc	ess	Instructions	reset value
[31:20]		reserve	
		ubdiv_frac	4'h3
		UART mode:	
		Indicates the fractional part of the quotient of the system clock divided by 16 times the baud rate clock. The specific value is fracx16.	
[19:16] RW		(refer to chapter baud rate calculation method)	
		7816 mode:	
		ubdiv_frac = (fclk_apb + fsc_clk)/(2 * fsc_clk) - 1;	
		(refer to 7816 clock calculation method)	
		ubdiv	16'h82
[15: 0] RW		UART mode:	
		Subtract 1 from the integer part of the quotient of the system clock divided by 16 times the baud rate clock.	
		The default system clock is 40MHz and the baud rate is 19200.	
	A	(Refer to the baud rate calculation method)	
	1	7816 mode:	
		ubdiv=Fi/Di (Fi, Di are the parameters fed back by the smart card, edu frequency: f_etuclk =	
		fsc_clk/(ubdiv+1))	
		(Refer to Section 7816 Rate Calculation Method)	

Table 154 UART&7816 baud rate control register

18.5.7 Interrupt Mask Register

bit acc	ess	Instructions	reset value
[31:10]		reserve	
[9]	RW	The 7816 card received an error signal error signal when sending. (7816 mode)	1'b1
[8]	RW	overrun error int mask, rxfifo overflow interrupt mask bit, effective high. (UART&7816 mode)	1'b1
[7]	RW	parity error int mask, parity check interrupt mask bit, high effective. (UART&7816 mode)	1'b1
[6]	RW	frame error int mask, data frame error interrupt mask bit, high effective. (UART mode)	1'b1
[5]	RW	break detect int mask, break signal detection interrupt mask bit, high effective. (UART mode)	1'b1
[4]	RW	cts changed indicate mask, CTS signal change interrupt mask bit, high effective. (UART mode)	1'b1
[3]	RW	rxfifo data timeout int mask, rxfifo receive data timeout interrupt mask bit, high effective. (UART & 7816	1'b1
		model)	
	DW	rxfifo trigger level int mask, rxfifo trigger level interrupt mask bit, effective high. (UART&7816 module	1'b1
[2]	RW	Mode)	
	DW	txfifo trigger level int mask, txfifo trigger level interrupt mask bit, effective high. (UART&7816 module	1'b1
[1]	ĸw	Mode)	
[0]	RW	txfifo empty int mask, txfifo is an empty interrupt mask bit, high effective. (UART&7816 mode)	1'b1

Table 155 UART&7816 interrupt mask register

18.5.8 Interrupt Status Register

Table 156 UART&7816 Interrupt Status Register

bit acc	ess	Instructions	reset value
[31: 9]		reserve	

-2 			
[9]	RW	The 7816 card received an error signal error signal when sending. (7816 mode)	
		overrun error (UART&7816 mode)	1'b0
[8]	RW	rxfifo overflowed.	
		Software actively writes 1 to clear 0.	
		parity error (UART&7816 mode)	1'b0
	PW/	The check digit of the received packet is wrong.	\bigcirc
[7]	NW	In case of DMA, this interrupt will still be generated. But DMA operations don't care about this interrupt.	
		Software actively writes 1 to clear 0.	
		frame error (UART mode)	1'b0
[6]	RW	Received packet with wrong stop bit.	
[6]		In case of DMA, this interrupt will still be generated. But DMA operations don't care about this interrupt.	
		Software actively writes 1 to clear 0.	
		break detect (UART mode)	1'b0
[5]	RW	A break packet is received.	
		In case of DMA, this interrupt will still be generated. But DMA operations don't care about this interrupt.	
		Software actively writes 1 to clear 0.	
[4]	\sim	cts changed (UART mode)	1'b0
	RW	This interrupt is generated when the cts signal changes.	
		Software actively writes 1 to clear 0.	
[3]	RW	rxfifo data timeout (UART&7816 mode)	1'b0
		The data length in rxfifo is less than rxfifo trigger level but no data is received for N data cycles,	
		An interrupt is generated.	

		Software actively writes 1 to clear 0.	
[2]		rxfifo trigger level interrupt (UART&7816 mode)	1'ЬО
		When the number of data in rxfifo changes from less than the number specified in rxfifo trigger level to greater than or equal to the number	
	RW	, this interrupt is generated.	
		At this time, the current data frame size should be determined according to the rxfifo count.	
		Software actively writes 1 to clear 0.	
[1]	RW	txfifo trigger level interrupt (UART&7816 mode)	1'b0
		When the number of data in txlifo changes from greater than the number specified in txlifo trigger level to less than or equal to the number	
		, an interrupt is generated.	
		Software actively writes 1 to clear 0.	
[0]	RW	tx fifo empty interrupt (UART&7816 mode)	1'b0
		This interrupt is generated when the current packet has been sent and the txfifo is empty.	
		Software actively writes 1 to clear 0.	

18.5.9 FIFO Status Register

Table 157 UART&7816 FIFO status register

bit acc	ess	Instructions	reset value
[31:13]		reserve	
[12]	RW	cts status (UART mode)	1'b0
		Current state of cts	

[11: 6] RW	rxfifo count (UART&7816 mode)	6'h0
	The number of data in rxfifo	
[5 : 0] RW	txfifo count (UART&7816 mode)	6'h0
	The number of data in txfifo	

18.5.10 TX Start Address Register

Table 158 UART&7816 TX start address register

bit acc	bit access Instructions			
		tx data window (UART&7816 mode)	32'h0	
		Send data start address.		
[31:0] WO		Note: uart only supports byte operation when sending and receiving data. When using burst transmission, it is possible to use word		
		The method of incrementing section address, the design supports up to 16-burst operation, that is, 16byte. So send from /		
		A total of 16 bytes (4 words) after the receiving start address are reserved as the sending/receiving data window.		

18.5.11 RX Start Address Register

Table 159 UART&7816 RX start address register

bit access		Instructions	reset value
		rx data window (UART&7816 mode)	32'h0
[31: 0] RO		Receive data start address.	
		Note: uart only supports byte operation when sending and receiving data. When using burst transmission, it is possible to use word	
		The method of incrementing section address, the design supports up to 16-burst operation, that is, 16byte. So send from /	
		A total of 16 bytes (4 words) after the receiving start address are reserved as the sending/receiving data window.	

18.5.12 7816 Guard Time Register

Table 160 7816 guard time register

bit access		Instructions	reset value
[31: 8]		reserve	
[7 : 0] RW		ex_gt_num	8'h0
[7:0] RVV		In 7816 mode, guard time calculation: 10+stop bits+configuration value ex_gt_num	1

18.5.13 7816 Timeout Time Register

Table 161 7816 timeout register

bit access		Instructions	reset value
[31:24]		reserve	
[23: 0] RW		wait time counter (in ETU) In 7816 mode: CWT and BWT times, configured to maximum default values. (In T1 mode: BWT = (11 etu+ 2BWI*960*Fd/fsc))	24'h78000

19 Timer module

19.1 Function overview

The timer consists of a 32-bit auto-reload counter driven by a divided system clock. W800 has 6 completely independent

stand timer. Accurate timing and interrupt functions are realized, which can be used for delay or periodic event processing.

19.2 Main Features

ÿ 6 fully independent timers

ÿ 32-bit auto-reload counter

ÿ The timing unit can be configured as ms, us

ÿ Can realize single timing or repeat timing function

ÿ Timing interrupt function

ÿ The timer count value can be queried at any time;

19.3 Functional description

The timer module is composed of 6 completely independent timers, independent of each other, and 6 channels can work at the same time.

The system clock is divided by the frequency division factor to obtain the us standard clock, which is used for the input clock of the counter. Timing unit can be configured as us, ms

kind of level.

The timing value is a 32-bit configurable register, which can meet the needs of different timing durations. Each timer corresponds to an interrupt, when

After the timing time is satisfied, if the interrupt function is enabled, an interrupt request will be generated, which can be used to process periodic events.

19.3.1 Timing function

The timing function refers to the time set by the user, and when the time is up, a hardware interrupt is generated, and the user is notified to implement a specific function. Timed Trigger Support Ticket

There are two kinds of times and periods, one can be used to handle single events, and the other can be used to handle periodic events.

The user obtains the APB bus clock frequency according to the frequency division factor of the system clock, and sets the reference microsecond count configuration register of the timer

(TMR_CONFIG), set the timing value, configure the timing unit, work mode, enable interrupt, and then start the timing function. when timed

When the time is up, the program enters the timer interrupt processing function to clear the interrupt.

19.3.2 Delay function

The delay function means that the user can keep the program in a waiting state according to the countdown function of the timer, and the program will not continue to run until the timing is completed.

Row.

19.4 Register Description

19.4.1 Register List

Table 162 Timer register list

offset address name		abbreviated acces	S	describe	reset value
	. ~	1		Standard us Timing frequency division value, by bus time	
0X0000 Standard us	configuration register	TMR CONFIG RW		clock frequency division to get the standard us timing, the value	0X0000 0027
				Equal to APB bus frequency (MHz) minus	
0X0004 Timer contro	I register	TMR_CSR	RW Timer	Control Register	0X0631_8C63
0X0008 Timer 1 timi	ng value configuration register TMR1_PRD		RW Timer	1 timing value configuration register 0X0000_	0000
0X000C Timer 2 time	ng value configuration register TMR2_PRD		RW Timer	2 timing value configuration register 0X0000_	0000
0X0010 Timer 3 timi	ng value configuration register TMR3_PRD		RW Timer	β timing value configuration register 0X0000_	0000

0X0014 Timer 4 timing val	alue configuration register TMR4_PRD		RW Timer	4 timing value configuration register 0X0000_	0000
0X0018 Timer 5 timing val	alue configuration register TMR5_PRD		RW Timer	5 timing value configuration register 0X0000_	0000
0X001C Timer 6 timing va	alue configuration register TMR6_PRD		RW Timer	6 timing value configuration register 0X0000_	0000
0X0020 Timer 1 current co	count value	TMR1_CNT	RO	Timer1 current count value	0X0000_0000
0X0024 Timer 2 current co	count value	TMR1_CNT	RO	Timer2 current count value	0X0000_0000
0X0028 Timer 3 current co	count value	TMR1_CNT	RO	Timer3 current count value	0X0000_0000
0X002C Timer 4 current co	count value	TMR1_CNT	RO	Timer4 current count value	0X0000_0000
0X0030 Timer 5 current co	count value	TMR1_CNT	RO	Timer5 current count value	0X0000_0000
0X0034 Timer 6 current co	count value	TMR1_CNT	RO	Timer6 current count value	0X0000_0000

19.4.2 Standard us configuration register

Table 163 Timer standard us configuration register

bit access		Instructions	reset value
[31: 7]		reserve	
[6 : 0] RW	J.	Clock frequency division configuration prescale. E.g: apb_clk=40MHz prescale = 40 – 1 = 8'd39	7'h27

19.4.3 Timer Control Register

Table 164 Timer timer control register

bit access Instructions reset valu	
------------------------------------	--

		I			
[31:30] RW		reserve	2'h0		
[29:25] RW	W TMR6_CSR, same as TMR1_CSR				
[24:20] RW	20] RW TMR5_CSR, same as TMR1_CSR				
[19:15] RW		TMR4_CSR, TMR1_CSR	5'h3		
[14:10] RW		TMR3_CSRÿÿ TMR1_CSR	5'h3		
[9 : 5] RW		TMR2_CSR, same as TMR1_CSR	5'h3		
		[4 : 0] is TMR1_CSR, as follows:	,		
		[4]: Interrupt status register, write 1 to clear			
		1'b0: Timer does not generate interrupt;	1'b0		
		1'b1: Timer generates an interrupt;			
		[3]: Interrupt enable register			
		1'b0: No interrupt will be generated after the timing is completed;	1'b0		
		1'b1: Generate an interrupt after the scheduled time is completed;			
		[2]: Timer enable register			
[4 : 0] RW		1'b0: The timer does not work;	1'b0		
	1'b1: Enable timer	1'b1: Enable timer			
	$\langle \rangle$	[1]: Timer working mode			
		1'b0: The timer repeats timing;	1'b1		
		1'b1: The timer only times once, and it will be automatically turned off after the timing is completed;			
		[0]: Timer timing unit			
		1'b0: The timing unit is us;	1'b1		
		1'b1: timing unit is ms;			

19.4.4 Timer 1 timing value configuration register

Table 165 Timer 1 timing value configuration register

bit acc	ess	Instructions	reset value
[31: 0] RV	V	Configure the timing value of timer 1	32'b0

19.4.5 Timer 2 timing value configuration register

Table 166 Timer 2 timing value configuration register

bit access	S		reset value	
[31: 0] RW		Configure the timing value of timer 2		32'b0

19.4.6 Timer 3 timing value configuration register

Table 167 Timer 3 timing value configuration register

bit acc	ess	Instructions	reset value
[31: 0] RV	v	Configure the timing value of timer 3	32'b0

19.4.7 Timer 4 timing value configuration register

Table 168 Timer 4 timing value configuration register

bit access	Instructions	reset value
[31: 0] RW	Configure the timing value of timer 4	32'b0

19.4.8 Timer 5 timing value configuration register

Table 169 Timer 5 timing value configuration register

bit acc	ess	Instructions	reset value
[31: 0] RV	v	Configure the timing value of timer 5	32'b0

19.4.9 Timer 6 timing value configuration register

Table 170 Timer 6 timing value configuration register

bit access	Instructions	reset value
[31: 0] RW	Configure the timing value of timer 6	32'b0

19.4.10 Timer 1 Current Count Value Register

bit acc	ess	Instructions	reset value
[31: 0] RC)	Read the current count value of timer 1;	32'b0

Timer 1 current count value register

19.4.11 Timer 2 Current Count Value Register

Timer 2 current count value register

bit acc	ess	Instructions	reset value
[31: 0] R0		Read the current count value of timer 2;	32'b0

19.4.12 Timer 3 Current Count Value Register

Timer 3 current count value register

bit acc	ess	Instructions	reset value
[31: 0] RC	þ	Read the current count value of timer 3;	32'b0

19.4.13 Timer 4 Current Count Value Register

Timer 4 current count value register

bit acce	ess		reset value	
[31: 0] RC)	Read the current count value of timer 4;		32'b0

19.4.14 Timer 5 Current Count Value Register

Timer 5 current count value register

bit access	i	Instructions	reset value
[31: 0] RO		Read the current count value of timer 5;	32'b0

19.4.15 Timer 6 Current Count Value Register

Timer 6 current count value register

bit acc	ess	Instructions	reset value
[31: 0] R0	þ	Read the current count value of timer 6;	32'b0

20 power management module

20.1 Function overview

The PMU realizes the switching of the working state of the chip hardware and the power management during the state switching process. It also provides timers, real-time clocks and

32K clock.

20.2 Main Features

ÿ Provide chip power control

ÿ Provide timer function

ÿ Provide real-time clock control

ÿ Provide 32K RC oscillator calibration function

ÿ Provide wake-up function;

20.3 Functional description

20.3.1 Full Chip Power Control

The PMU module controls the power switch of the chip, including 40M oscillation circuit, BandGap, digital PLL, voltage detection circuit, digital circuit

LDOÿ

When the chip is powered on, the PMU module guides each module to turn on the power in turn according to the preset power-on sequence;

When the software configuration register enters the sleep mode, guide each functional module to turn off the power in turn according to the safe power-off sequence;

When the software configuration register enters sleep mode, turn off the clock, crystal oscillator circuit and related power supply in order;

Provides three wake-up modes in sleep/sleep mode: Timer scheduled wake-up, RTC scheduled wake-up or through the special WAKEUP pin

Pull high to wake up.

20.3.2 Low Power Modes

Two low-power modes can be selected by configuring the PMU register chip;

Standby mode:

In this mode, the power supply of the digital power domain will be turned off, and only the PMU module of the whole chip will work, providing wake-up and reset functions;

Consumption is about 15uA or so. After the power is turned off, all the data and content stored in the memory will be lost, and the firmware will be reloaded after waking up, which is equivalent to restarting the

start up;

Sleep mode:

In this mode, the power of the digital power domain will be reserved, only the DPLL and the crystal oscillator circuit will be turned off, and the clock will be cut off. At this time, the power consumption of the whole chip is about

About 1mA; the data and code stored in the memory will still be retained; the program will continue to run after waking up;

20.3.3 Wake-up Mode

PMU supports 3 wake-up modes, Timer wake-up, RTC wake-up and external IO wake-up.

Timer wake up

Before the software sets the sleep/sleep mode, configure the Timer0 module in the PMU and set the sleep time. When the system enters sleep mode, the

When Timer0 reaches the sleep time, it will wake up the system and generate a corresponding Timer interrupt. After the system resumes operation, it is necessary to correct the interruption status.

Write '1' to the corresponding status bit in the status register to clear the interrupt status, otherwise, it will be woken up by the interrupt immediately after entering the sleep mode next time;

RTC wakeup

Before the software sets the sleep/sleep mode, configure the RTC module in the PMU and set the sleep time. When the system enters sleep mode, when

When the RTC timer reaches the sleep time, the system will be woken up and the corresponding RTC interrupt will be given. After the system resumes running, please set the interrupt register 0x14

Write '1' to the corresponding status bit in the corresponding status bit to clear the interrupt status, otherwise, it will be woken up by the interrupt immediately after entering the sleep mode next time;

Wake up from external IO

After software dormancy/sleep, the PMU will detect a specific Wakeup pin, the external controller can wake up the system by pulling this IO high, and give

Corresponding IO wake-up interrupt. The PMU no longer detects this IO state after leaving sleep mode. After the system resumes running, please set the interrupt register 0x14

Write '1' to the corresponding status bit in the corresponding status bit to clear the interrupt status, otherwise, it will be woken up by the interrupt immediately after entering the sleep mode next time;

20.3.4 Timer0 Timer

Configure the timer enable signal and timing time through the AHB register. First set the timing value, then set the timer enable BIT to start timing

When the timer reaches the specified time, an interrupt is generated, and the software clears the interrupt flag by writing BIT0 of the status register.

20.3.5 Real Time Clock Function

Reference Real Time Clock Module

20.3.6 32K clock source switching and calibration

The W800 chip integrates a 32K RC oscillator as the clock source of the PMU module.

Due to changes in the working environment and temperature, the output frequency of the 32K RC oscillator may change, resulting in timing deviation. Therefore, in the PMU module

The 32K RC oscillator calibration function is introduced in the block, and the switching function of the 32K clock is used to correct the timing deviation.

1) Switching of 32K clock source

The 32K clock can be switched from the 32K RC oscillator to the frequency divided by the 40M clock by setting bit3 of the PS_CR register to 1.

to the 32K clock. However, when the chip enters sleep mode, because the 40M clock will be turned off, bit3 will be cleared to 0 automatically. after waking up

If the firmware still needs to use the precise timing function, it is necessary to reset bit3 to 1.

2) Calibration of 32K RC oscillator circuit

First set bit2 of PS_CR register to 0, and then set bit2 of PS_CR register to 1.

After calibration, the 32K RC oscillator will be relatively accurate. But if you want more accurate timing, it is recommended to use 40M clock frequency division

The obtained 32K clock will be an accurate RTC clock at this time, and the deviation will only be related to the crystal frequency deviation.

20.4 Register Description

20.4.1 Register List

offset address	name	abbreviated a	ccess	describe	reset value
0X0000	DMI I Control Pogistor DS_CP		RW is used	to configure 32K calibration, configure 32K clock	0X0000_0002
	PMU Control Register PS_CR	\bigcirc		Source, set the STANDBY function of the chip	
020004			RW Configu	re timing value (unit is second), enable timing	0X0000_0000
0X0004	PMU Timer 0	TIMERO		device	
0X0008 Reserved					
0X0014	PMU interrupt source register II	NT_SRC	RW provide	s PMU interrupt flag	0X0000_0000

Table 171 PMU register list

20.4.2 PMU Control Registers

Table 172 PMU Control Register

bit access Instructions reset value	bit access	Instructions	reset value
-------------------------------------	------------	--------------	-------------

[31: 11] RO			24'b0
[10]		Wake-up button interrupt polarity selection:	1'b0
	RW	0: Set an interrupt when the wake-up button is at a high level;	
		1: Set an interrupt when the wake-up button is at a high level;	
		Only valid in Sleep interrupt;	
[9:6]	RW	The minimum hold time for key-press wake-up:	4'd01
		Unit: 128ms;	
[5]		DLDO_CORE reference voltage source selection	1'b1
	RW	1: ABG	
		0: DBG	
[4]	RW	32K oscillator circuit BYPASS signal	1'b0
		High effective, after set to 1, 32K is obtained by dividing the frequency of 40M clock. •2	
[3]		RC 32K oscillator calibration circuit start switch;	1'ЬО
	RW	1'b0: Calibration circuit reset;	
		1'b1: start the calibration circuit;	
		To start the calibration function, this bit needs to be set to 0 first and then to 1.	
[2]	5	Enable the key to trigger the sleep function	1'b0
	RW	0: disable;	
		1: In active mode, press the io_wakeup button to reach the threshold time , will trigger	
		io_sleep_flag is interrupted and reported to MCU.	
[1]	RW	Sleep enable signal, high effective.	1'b1
		1'b0: chip wake-up state	

2		1'b1: The chip enters the Sleep state	
		If WAKEUP pin is inactive level, and TIMER0/1 interrupt wakeup is not configured, this register	
		When valid, the chip enters the Sleep state;	
		If the wake-up interrupt is generated, the chip will switch from the Sleep state to the wake-up state, and the wake-up condition is met.	
		This bit is automatically cleared to 0.	
		Wakeup source: WAKEUP pin, TIMER0/TIMER1, RTC	
		1) The WAKEUP pin is active high; if the chip enters the Sleep state, the WAKEUP pin must be in	
		low level. To wake up, pull the WAKEUP pin high to generate a wake-up interrupt and make the chip leave Sleep	, >
		state.	
		2) TIMER0, timer wake-up interrupt.	
		When the WAKEUP pin is low, TIMER0 sets the timing time and enables it, and when the timing time is up, it will generate a call	
		Wake up interrupt to make the chip leave the Sleep state.	
		3) RTC, timing time to wake up	
		When the WAKEUP pin is low and the RTC timing is up, a wake-up interrupt will be generated to make the chip leave the Sleep state.	
		state	
[0]		STANDBY enable signal, high effective.	1'b0
	~	1'b0: chip wake-up state	
	1	1'b1: chip enters STANDBY state	
	RW	If WAKEUP pin is inactive level, and TIMER0/1 interrupt wakeup is not configured, this register	
		When valid, the chip enters the STANDBY state;	
		If the wake-up interrupt is generated, the chip will switch from the STANDBY state to the wake-up state, and the wake-up condition is satisfied	
		sufficient, this bit is automatically cleared to 0.	

	Wakeup source: WAKEUP pin, TIMER0/TIMER1, RTC	
	4) The WAKEUP pin is active high; if the chip enters the STANDBY state, the WAKEUP pin must be in the	
	at low level. To wake up, pull up the WAKEUP pin to generate a wake-up interrupt and make the chip leave	
	STANDBY state.	
	5) TIMER0, timer wake-up interrupt.	
	When the WAKEUP pin is low, TIMER0 sets the timing time and enables it, and when the timing time is up, it will generate a call	
	Wake up interrupt to make the chip leave STANDBY state.	
	6) RTC, timing time to wake up) Y
	When the WAKEUP pin is low and the RTC timing time is up, a wake-up interrupt will be generated to make the chip leave	
	STANDBY state	

20.4.3 PMU Timer 0

Table 173 PMU Timer 0 Register

bit acce	SS	Instructions	reset value
[31:17] RO res	served		15'b0
[16]	X	Timer0 enable bit	1'b0
	RW	1'b0: bit enable.	
		1'b1: enable;	
[15: 0] RW Tin	ner0 timing v	alue, unit: second	16'b0

20.4.4 PMU Interrupt Source Registers

Table 174 PMU interrupt source register

bit acces	s	Instructions	reset value
[31: 9]	R reserved		
[8]	RW shows	the current power-on status:	1'b0
		1'b0: Power-on or reset start	
		1'b1: Wake up from sleep state, write 1 to clear	
[7]	RO reserv	ed	1'b0
[6]	RO reserv	ed	1'b0
[5]	RW RTC t	ming interrupt flag bit:	1'b0
		1'b0: A timer interrupt is generated	
		1'b1: no scheduled interrupt, write 1 to clear	
[4]	RW Reser	ved	1'b0
[3]	RW Reser	ved	1'b0
[2]	RW WAKE	UP pin wakeup interrupt flag bit	1'b0
		1'b0: No WAKEUP interrupt generated	
		1'b1: WAEKUP wakeup interrupt is generated, write 1 to clear	
[1]	RW Reser	ved	1'b0
[0]	RW Timer	0 timing interrupt flag bit:	1'b0
		1'b0: No Timer0 interrupt generated	
		1'b1: Timer0 interrupt is generated, write 1 to clear	

21 Real Time Clock Module 21.1 Function overview RTC is a BCD counter/timer provided by the PMU module. Two 32-bit registers contain seconds, minutes, hours, days, months, years, and The decimal format representation (BCD) of the base code can automatically correct the months with 28, 29 (leap year), 30, and 31 days. Under the corresponding software configuration, RTC can not only provide the clock calendar function, but also can be used as a timer, when the timer reaches the set time Then an RTC interrupt will be generated, which can be used to wake up the system in sleep state. The RTC module has two clock sources that can be configured: 40M clock frequency division and internal 32K clock. Which can be used by software configuration during normal work clock source; only 32K clock can be used in sleep state. If the RTC clock source in the normal working state is obtained by dividing the frequency of the 40M clock, then After entering the sleep state, it will automatically switch to the 32K clock, and the system will still use the 32K clock after it is woken up. So as long as the power supply voltage The RTC module will not stop working no matter whether the module is in normal working state or sleeping state. 21.2 Main Features ÿ Provide timing function ÿ Provide timing function v Provide timing interrupt ÿ Interrupt to wake up the system 21.3 Functional Description 21.3.1 Timing function

The initial value of day, hour, minute and second can be configured in RTC configuration register 1, and the initial value of year and month can be configured in RTC configuration register 2.

The RTC configuration register 2 enables the timekeeping function.

After the RTC timing function is enabled, read the RTC configuration register 1 to get the current date, hour, minute, second value, read the RTC configuration register

Register 2 can get the current year and month value.

21.3.2 Timing function

In RTC configuration register 1, the timing value of day, hour, minute and second can be configured; in RTC configuration register 2, the timing value of year and month can be configured; in

RTC configuration register 1 enables timing functions.

When the RTC timer reaches the timing time, an RTC interrupt will be generated. At this time, set the RTC interrupt bit of the PMU interrupt source register to 1 to clean

In addition to interrupt status.

When the system enters the sleep mode, the interrupt generated by the RTC timer will wake up the system.

21.4 Register Description

21.4.1 Register List

The RTC module has two 32-bit dedicated registers, and the RTC interrupt status needs to query the PMU interrupt source register.

Table 175 RTC register list

offset address	name	abbreviated	access	describe	reset value
0X000C	RTC configuration register 1	RTC_R1 RW Con	figure the value o	RTC day, hour, minute and second, and configure the timing to	nable 0X0000_0000
0X0010	RTC configuration register 2	RTC_R2 RW Con	figure RTC year a	nd month value, configuration enable timing 0X0000_0000	

21.4.2 RTC Configuration Register 1

Table 176 RTC configuration register 1

bit acces	S	Instructions	reset value
[31]	RW	RTC timing interrupt function enable	1'b0

	1'b0: disable	
	1'b1: enable	
[30:29]	reserve	
[28:24] RW	Daily initial value/daily fixed value	5'b0
[23:21]	reserve	
[20:16] RW	Hour initial value/hour timer value	5'b0
[15:14]	reserve	
[13: 8]	reserve	
[7 : 6]	reserve	
[5 : 0] RW	Second initial value/second timing value	6'b0

21.4.3 RTC Configuration Register 2

bit access		Instructions	reset value
[31:17]		reserve	
[16]	RW	RTC timing function enable bit 1'b0: disable 1'b1: enable	1'b0
[15]		reserve	
[14: 8] RW		Beginning of the year value/annual fixed value	7'b0
[7 : 4]		reserve	
[3 : 0] RW		Initial value/Monthly fixed value	4'b0

Table 177 RTC configuration register 2

22 Watchdog module 22.1 Function overview Realize the "watchdog" function. Designed for global reset on system crash. The "watchdog" will generate a periodic interrupt, and the system software will clear its interrupt flag after the interrupt is generated, if it is not cleared after the set time In addition, a hard reset signal will be generated to reset the system. 22.2 Main Features ÿ Provide timing function ÿ Provide reset function ÿ Provide timing interrupt 22.3 Functional Description 22.3.1 Timing function After setting the timing value to the register WD_LD, set the BIT0 of WDG_CTRL to 1 to start the timer, and the WDG module will generate The life timer is interrupted, and the program is notified to process it. If the bit0 of the register WD_CLR is not cleared, a timer interrupt will be generated periodically.

The value of WD_LD is based on the APB clock unit, and the APB clock is divided from the 160M clock.

22.3.2 Reset Function

After setting the chip timing value WD_LD, start the timing and reset function (set BIT1/BIT0 of WDG_CTRL), and the WDG module will start up and down.

Timing, when the timing time is up, WDG will generate a timing interrupt, and if the BIT0 of WD_CLR is not cleared, the chip will

A reset signal is generated in the next cycle.

22.4 Register Description

22.4.1 Register List

offset address	name	abbreviated a	ccess	describe	reset value
0X0000	WDG Timing load register WD_	_D	RW configur	ation timing value for repeated loading	0XFFFF_FFFF
0X0004	WDG current value register WD	_VAL	RO Gets the	value of the current timer	0XFFFF_FFFF
0X0008	WDG Control Register WD_CTF	RL RW Control Regist	er		0X0000_0000
0X000C	WDG interrupt clear register WE)_CLR	WO interrupt	clear register	0X0000_0000
0X0010	WDG interrupt source register V	/D_SRC	RO Interrupt	Source Register	0X0000_0000
0X0014	WDG Interrupt output register W	D_STATE RO Interru	ipt output statu	s register	0X0000_0000

Table 178 WDG register list

22.4.2 WDG Timing Value Loading Register

Table 179 WDG timing value loading register

bit acces	ss	reset value	
		Configure the timing value for repeated loading	32'hffff_ffff
[31: 0] RW		The value of this register is counted in APB clock.	
		For example: if the APB clock is 40MHZ, the maximum duration of the timing value is about 107s, that is	
		0FFFFFF/4000000	

22.4.3 WDG Current Value Register

Table 180 WDG current value register

bit acce	bit access Instructions		reset value
		Get the value of the current timer	32'hffff_ffff
[31: 0] RO		To calculate the remaining time, just read the current value.	
		To calculate the elapsed time, just subtract the value of register WD_VAL from the value of register WD_LD	\bigcirc

22.4.4 WDG Control Register

bit access		Instructions	reset value
[31: 2]		reserve	30'h0
		reset enable bit	1'b0
[1]	RW	1'b0: No reset signal is generated when WDG reset condition occurs	
		1'b1: A reset signal is generated when a WDG reset condition occurs	
		timing enable bit	1'b0
[0]	RW	1'b0: Timer does not work	
	\sim	1'b1: Timer works and generates periodic interrupt	

Table 181 WDG Control Register

22.4.5 WDG Interrupt Clear Register

Table 182 WDG interrupt clear register

bit acce	ess	Instructions	reset value
[31: 1]		reserve	31'h0

Winner Micro 联盛德微电子

[0]	WHERE	Interrupt status clear bit, write any value to clear the current interrupt status	1'b0

22.4.6 WDG Interrupt Source Register

Table 183 WDG interrupt source register

bit acc	ess	Instructions	reset value
[31: 1]		reserve	31'h0
[0]	RO	Interrupt source register, the timer function is turned on, and the interrupt will be generated at the same time	1'b0

22.4.7 WDG Interrupt Status Register

bit acce	; \$\$	Instructions	reset value
[31: 1]		reserve	31'h0
[0]	RO	Interrupt output status register. This interrupt is not generated after the timer is closed, but WD_SRC may be 1	1'b0

Table 184 WDG interrupt status register

23 PWM controllers

23.1 Function overview

PWM is a method of digitally encoding the level of an analog signal. Through the use of a high-resolution counter, the duty cycle of the square wave is modulated with

to encode the level of a specific analog signal. The PWM signal is still digital because at any given moment, the full-scale direct

DC power supply is either fully present (ON) or completely absent (OFF). A voltage or current source is a repetitive pulse of on (ON) or off (OFF)

The impulse sequence is added to the simulated load. When it is on, it means that the DC power supply is added to the load, and when it is off, it means that the power supply is disconnected.

when. Any analog value can be encoded using PWM as long as the bandwidth is sufficient.

23.2 Main Features

ÿ Support 2-channel input signal capture function (PWM0 and PWM4 two channels)

ÿ Input signal capture function supports interrupt interactive mode and DMA transfer mode; DMA mode supports word-by-word operation

ÿ Support 5-channel PWM signal generation function

ÿ 5-channel PWM signal generation supports one-shot generation mode and auto-load mode

ÿ Support 5-channel braking function

ÿ PWM output frequency range: 3Hz~160kHz

ÿ Maximum accuracy of duty cycle: 1/256, counter width for inserting dead zone: 8bit

ÿ Support channel 0 channel 1 synchronization function, support channel 2 channel 3 synchronization function

ÿ Support complementary and non-complementary modes of channel 0 and channel 1, support complementary and non-complementary modes of channel 2 and channel 3

ÿ Support 5-channel synchronization function

23.3 Functional Description

23.3.1 Input Signal Capture

The PWM controller supports the signal capture function of two channels, and the capture of channel 0 can be activated by setting Bit24 of the PWM_CTL register

function, the capture function of channel 4 can be activated by setting Bit1 of the PWM_CAP2CTL register. The level of the captured signal can also be

to set whether to flip the function. After the channel captures the corresponding signal, the capture number is updated to the corresponding capture register PWM_CAPDAT (through

channel 0 capture number) and PWM_CAP2DAT (channel 4 capture number).

23.3.2 DMA Transfer Capture Number

After the capture function is enabled on channel 0 or channel 4, the count of the capture register can be quickly transferred to the memory through the DMA channel, speeding up user

process.

23.3.3 Support for one-shot and automount modes

Each of the five output channels of the PWM controller supports one-shot output mode and auto-reload mode. In single load mode, the channel outputs a specified cycle

After three waveforms, the PWM wave will no longer be output; in the automatic loading mode, after the channel outputs the specified period of waveforms, it will automatically reload the period

number, thereby continuing to generate PWM waves

23.3.4 Multiple Output Modes

The PWM controller supports independent output mode, that is, each channel outputs independently without interfering with each other; it supports dual-channel synchronous mode, that is, one channel's The output is completely consistent with the output of another channel; supports five-channel synchronous mode, the output of channel 1 to channel 4 is completely consistent with the output of channel 0 consistent; support dual-channel complementary output, that is, the waveform output by one channel is completely opposite to the waveform output by the other channel; support complementary mode

Commonly used dead zone setting, the dead zone length can be set up to 256 clock cycles; support braking mode, when the braking port detects the specified voltage

After leveling, the output channel will output the brake level that has been set.

A variety of output modes are flexible and configurable to meet various application scenarios related to PWM by users.

23.4 Register Description

23.4.1 PWM Register List

offset address name	abbreviation	access	describe	reset value
0X0000 Clock frequency division register_01 F	WM_CLKDIV01 RW Divid	e the clock	frequency of channel 0 and channel 1 0X0000	_0000
0X0004 Clock frequency division register_23 F	WM_CLKDIV23 RW Divid	e the clock	frequency of channel 2 and channel 3 0X0000	_0000
0X0008 Control register	PWM_CTL	RW is us	ed to configure or control some configurable it	ems 0X0000_0000
0X000C period register	PWM_PERIOD	RW is us	ed to set the period of channel 0 to channel 4	0X0000_0000
0X0010 Cycle rumber register		RW is used	to set the signal generation of channel 0 to channel 4	0X0000_0000
	F WIN_FINOIVI		Number of cycles	
0X0014 compare register		RW is used	to store the comparison value of channel 0 to channel 4	0X0000_0000
			to produce different duty cycles	
0X0018 Dead zone control register	PWM DTCTI	RW is us	ed to configure or control the configurable	0X0000_0000
			set item	
0X001C interrupt control register	PWM_INTEN	RW is us	ed to enable and control related interrupts 0X0	000_0000
0X0020 interrupt status register	PWM_INTSTS	RW is used	to query the status of related interrupts	0X0000_0000
0Y0024 changel 0 capture register BWM_CAR	DAT	RO is us	ed to capture and count the rising	0X0000_0000
			edge and falling edge	
0X0028 Brake control register	PWM_BRKCTL	RW is us	ed to control the brake mode	0X0000_0000
0X002C Clock frequency division register_4 P	VM_CH4_reg1 RW Freque	ency divisio	n of channel 4 clock	0X0000_0000

0X0030 Channe	el 4 control register_1 PWM_C	H4_reg2 RW Set the relev	vant config	uration items of channel 4 0X0000_0000	
020024 channe	4 conturo register DWM CA		RO is us	ed to capture and count the rising	0X0000_0000
0X0034 channe	a 4 capture register PWM_CA			edge and falling edge	
0X0038 Channe	el 4 control register_2 PWM_C	AP2CTL RW Set related of	configuratio	n items of channel 4 0X0000_0000	

23.4.2 Clock Divider Register_01

bit acce	ess	Instructions	reset value
[31:16] RW		CLKDIV1	16'h0
		CH1 frequency division counter	
		The frequency division number is determined by the counter value	
		Note: The frequency division range is (0~65535), if no frequency division is required, input 0 or 1.	
[15:0] RW		CLKDIV0	16'h0
		CH0 frequency division counter	
		Same as CH1	

Table 186 PWM clock frequency division register_01

23.4.3 Clock frequency division register_23

Table 187 PWM clock frequency division register_23

bit acc	ess	Instructions	reset value
[31:16] RW		CLKDIV3	16'h0
		CH3 frequency division counter	
		Same as CH1	
[15:0] RW		CLKDIV2	16'h0

	CH2 frequency division counter	
	Same as CH1	

23.4.4 Control Registers

Table 188 PWM Control Register

bit ac	cess	Instructions	reset value
[31:27] RW		CNTEN	5'b0
		Counter count enable	
		1'b0: stop counting	
		1'b1: start counting	
		Note: Each bit controls each channel separately, from high to low to control CH4, CH3, CH2, CH1 and CH0	
[26]	-	reserve	1'b0
[25]	RW	CAPINV	1'b0
		Capture reverse enable flag	
		1'b0: capture mode input signal reverse invalid	
	1	1'b1: The reverse of the input signal in capture mode is valid, and the input signal is reversed	
[24]	RW	CPEN	1'b0
		Capture function enable flag	
		1'b0: The capture function of CH0 is invalid, and the values of RCAPDAT and FCAPDAT will not be updated;	
		1'b1: CH0 capture function is valid, capture and latch the PWM counter, respectively stored in RCAPDAT (rising	
		edge latch) and FCAPDAT (falling edge latch)	
[23:22] RW		CNTTYPE3	2'b0

		CH3 counter counting mode	
		2'b00: Edge-aligned mode (the counter counts up, only for capture mode)	
		2'b01: Edge-aligned mode (the counter counts down, only for PWM mode)	
		2'b10: Center-aligned mode (PWM mode only)	
		Note: In PWM mode, when the counter is set to edge-aligned mode, it is necessary to set the counting mode to decrement	
		Way.	
[21:20] RW		CNTTYPE2	2'b0
		CH2 counter counting mode	
		Same as CH3	
[19:18] RW		CNTTYPE1	2'b0
		CH1 counter counting mode	
		Same as CH3	
[17:16] RW		CNTTYPE0	2'b0
		CH0 counter counting mode	
		Same as CH3	
[15:14] RW		TWOSYNCEN	2'b0
	Δ	2-channel synchronous mode enable signal	
	Z	1'b0: 2-channel synchronization not allowed	
		1'b1: allow 2-channel synchronization,	
		PWM_CH0 and PWM_CH1 have the same phase, and the phase is determined by PWM_CH0; PWM_CH2	
		Has the same phase as PWM_CH3, and the phase is determined by PWM_CH2	
		15bit control CH3 and CH2	

		14bit control CH1 and CH0	
[13]	reserve		1'b0
[12]	RW	PAIN	1'b0
		PWM pin output enable bit	
		1'b0: PWM pin is set to output state	
		1'b1: PWM pins are tri-stated	\bigcirc
		Note: only for CH0	,
[11:8] RW		CNTMODE	4'h0
		PWM Generation Cycle Mode	
		1'b0: one-shot mode	
		1'b1: autoload mode	
		Note: During the change of CNTMODE, PWM_CMPDAT is reset to zero; each bit controls each channel separately, from high	
		to low to control PW3, PW2, PW1 and PW0 in turn	
[7]	reserve		1'b0
[6]	RW	THE ALLSYNC	1'b0
		All channel synchronous mode enable signal	
	\sim	1'b0: Synchronization of all channels not allowed	
		1'b1: Allow synchronization of all channels, PWM_CH0, PWM_CH1, PWM_CH2 and PWM_CH3 have	
		The same phase, and the phase is determined by PWM_CH0	
[5:2] RW		PINV	4'h0
		PWM output signal polarity enable	
		1'b0: PWM output polarity inversion disabled	

	1'b1: PWM output polarity inversion enable	
	Note: Each bit controls each channel separately, from high to low to control PW3, PW2, PW1 and PW0	
[1:0] RW	OUTMODE	2'b0
	output mode	
	1'b0: Non-complementary mode every two channels	
	1'b1: Every two channels form a complementary pattern	\bigcirc
	BIT1 controls CH2 and CH3	,
	BIT0 controls CH0 and CH1	¢.

23.4.5 Period Register

Table 189 PWM period register

bit acc	ess	Instructions	reset value
[31:24] RW		PERIOD3	8'h0
		CH3 period register value (note: period cannot be greater than 255)	
		"Edge-aligned mode (counter counting method is decrementing)":	
		ÿ PERIOD register value, the period value is (PERIOD + 1)	
1	$\langle h \rangle$	ÿ Duty cycle = (CMP+1)/(PERIOD + 1)	
		ÿ CMP>=PERIOD: PWM output is fixed at high	
		ÿ CMP <period: (cmp+1)<="" (period-cmp),="" high="" is="" level="" low="" pwm="" td="" width=""><td></td></period:>	
		ÿ CMP=0: PWM low level width is PERIOD, high level width is 1;	
		"Middle Alignment Mode":	
		ÿ PERIOD register value: the period is 2*(PERIOD+1)	

		ÿ Duty cycle=(2*CMP+1)/(2*(PERIOD+1))	
		ÿ CMP>PERIOD: PWM keeps high	
		ÿ CMP<=PERIOD: PWM low level=2*(PERIOD-CMP)+1,	
		High level = (2*CMP) +1	
		ÿ CMP=0: PWM low level width is 2*PERIOD+1, high level width is 1.	
		Note: In "middle aligned mode", the number of cycles should not be 255.	\bigcirc
		No matter which alignment mode is selected, the channel period is determined by the frequency division number (N) and the number of periods (P),	/
		That is: the input clock is 40MHz, the clock frequency f_div after frequency division is: f_div = 40MHz/N, N is divided	
		Frequency (16bit). The output frequency f_output is: f_output = f_div / P, where P is the number of cycles.	
		Note: In PWM mode, when the counter is set to edge-aligned mode, it is necessary to set the counting mode to decrement	
		Way.	
[23:16] RW		PERIOD2	8'h0
		CH2 period register value (note: period cannot be greater than 255)	
		same PERIOD3	
[15:8] RW		PERIOD1	8'h0
		CH1 period register value (note: period cannot be greater than 255)	
	A)	same PERIOD3	
[7:0] RW	1	PERIOD0	8'h0
		CH0 period register value (note: period cannot be greater than 255)	
		same PERIOD3	

23.4.6 Cycle Count Register

Table 190 PWM Cycle Number Register

bit acc	ess	Instructions	reset value
[31:24] RW		PNUM3	8'h0
		PWM3 generation cycle number	
		Set PWM3 cycle number PNUM3, when PWM generates PNUM3 PWM signals, stop generating signals	\bigcirc
		number, trigger the interrupt and set the interrupt status word at the same time	,
[23:16] RW		PNUM2	8'h0
		PWM2 Generation Cycles	
		same PNUM3	
[15:8] RW		PNUM1	8'h0
		PWM1 generation cycle number	
		same PNUM3	
[7:0] RW		PNUMO	8'h0
		PWM0 generation cycle number	
		same PNUM3	

23.4.7 Compare Register

Table 191 PWM compare register

bit acc	ess	Instructions	reset value
[31:24] RW		СМРЗ	8'h0
		PWM3 compare register value	

		"Edge-aligned mode (counter counting method is decrementing)":	
		ÿ PERIOD register value, the period value is (PERIOD + 1)	
		ÿ Duty cycle = (CMP+1)/(PERIOD + 1)	
		ÿ CMP>=PERIOD: PWM output fixed bit high	
		ÿ CMP <period: (cmp+1)<="" (period-cmp),="" high="" is="" level="" low="" pwm="" td="" width=""><td></td></period:>	
		ÿ CMP=0: PWM low level width is PERIOD, high level width is 1;	\bigcirc
		"Middle Alignment Mode":	
		ÿ PERIOD register value: the period is 2*(PERIOD+1)	
		ÿ Duty cycle=(2*CMP+1)/2*(PERIOD+1)	
		ÿ CMP>PERIOD: PWM keeps high	
		ÿ CMP<=PERIOD: PWM low level=2*(PERIOD-CMP)+1, high level=(2*CMP)+1	
		ÿ CMP=0: PWM low level width is 2*PERIOD+1, high level width is 1.	
		No matter which alignment mode is selected, the channel period is determined by the frequency division number (N) and the period number (P), namely:	
		The input clock is 40MHz, the clock frequency f_div after frequency division is: f_div = 40MHz/N, N is the frequency division number	
		(16bit). The output frequency f_output is: f_output = f_div / P, where P is the number of cycles.	
	~	Note: In PWM mode, when the counter is set to edge-aligned mode, it is necessary to set the counting mode to decrement	
1	Δ	Way.	
[23:16] RW		CMP2	8'h0
		PWM2 compare register value	
		Same as CMP3	
[15:8] RW		CMP1	8'h0
		PWM1 compare register value	

	Same as CMP3	
[7:0] RW	СМРО	8'h0
	PWM0 compare register value	
	Same as CMP3	

23.4.8 DEAD-TIME CONTROL REGISTER

bit ac	cess	Instructions	reset value
[31:22]	reser	ve	10'h0
[21]	RW	DTEN23	1'b0
		Whether channel 2 and channel 3 can be inserted into the dead zone valid mark	
		The effective signal of inserting dead zone is valid only after the complementary mode of the channel is turned on. And, if a valid signal is inserted	
		If it is 0, there is no dead zone insertion for the complementary signals output by the two channels	
		1'b0: Insert dead zone invalid	
		1'b1: Insert dead zone valid	
[20]	RW	DTEN01	1'b0
	\mathcal{L}	Whether channel 0 and channel 1 can be inserted into the effective flag of the dead zone	
		Same as DTEN23	
[19:18]	reserve		2'b0
[17:16] RW		DTDIV	2'b0
		Dead-band clock frequency division control	
		2'b00: dead zone clock is equal to base clock (40MHz)	

Table 192 PWM dead zone control register

	2'b01: The dead zone clock is equal to the reference clock (40MHz) divided by two	
	2'b10: The dead zone clock is equal to the reference clock (40MHz) divided by four	
	2'b11: The dead zone clock is equal to the reference clock (40MHz) divided by eight	
[15:8] RW	DTCNT23	8'h0
	Dead-band interval for channel 3 and channel 2	
	8bit determines the dead zone interval value, and the dead zone clock is determined by DTDIV	
[7:0] RW	DTCNT01	8'h0
	Dead-band interval between channel 1 and channel 0	
	8bit determines the dead zone interval value, and the dead zone clock is determined by DTDIV	

23.4.9 Interrupt Control Register

bit ac	cess	Instructions	reset value
[31:8]	reser	ve	24'h0
[7]	RW	DMA_request_EN	1'b0
		DMA_request enable	
	Δ	1'b0: DMA_request invalid	
		1'b1: DMA_request valid	
[6]	RW	FLY	1'b0
		Falling edge buffer interrupt enable bit	
		1'b0: Falling edge buffer interrupt is invalid	
		1'b1: Falling edge buffer interrupt is valid	

Table 193 PWM interrupt control register

		Note: For CH0	
[5]	RW	RLIEN	1'b0
		Rising edge buffer interrupt enable bit	
		1'b0: Rising buffer interrupt invalid	
		1'b1: Rising edge buffer interrupt is valid	
		Note: For CH0	\bigcirc
[4:0] RW		SMALL	5'b0
		PWM Period Interrupt Enable Bit	
		1'b0: Periodic interrupts are inactive	
		1'b1: Periodic interrupt active	
		Note: When the counter counts to 0 and the number of PWM periods satisfies PWM_PNUM, an interrupt is triggered.	

23.4.10 Interrupt Status Register

Table 194 PWM Interrupt Status Register

bit ac	cess	Instructions	reset value
[31:10]	reser	Y8	12'h0
[9]	RW	OVERFL	1'b0
		counter overflow flag	
		1'b0: capture mode, the counter does not overflow during the counter counting process	
		1'b1: capture mode, counter overflow during counter counting	
		Note: When the user clears CFLIF or CRLIF, this bit will also be cleared at the same time	
[8]	RW	FLIFOV	1'b0

		Falling edge delay interrupt flags overrun status	
		1'b0: When CFILF is 1, no falling edge delay interrupt will be generated	
		1'b1: When CFILF is 1, falling edge delay interrupt occurred again	
		Note: When the user clears CFILF, this bit is also cleared at the same time	
[7]	RW	RLIFOV	1'b0
		Rising edge delay interrupt flags overrun status	
		1'b0: When CRILF is 1, no rising edge delay interrupt will be generated	
		1'b1: When CRILF is 1, another rising edge delay interrupt occurs	
		Note: When the user clears CRILF, this bit is also cleared at the same time	
[6]	RW	CFLIF	1'b0
		Capture falling edge interrupt flag	
		1'b0: No falling edge captured	
		1'b1: When a falling edge is captured, this bit is set to 1	
		Note: By writing 1, clear this flag;	
		Note: For CH0	
[5]	RW	CRLIF	1'b0
	\sim	Capture rising edge interrupt flag	
	N	1'b0: rising edge not captured	
		1'b1: When a rising edge is captured, this bit is set to 1	
		Note: By writing 1, clear this flag;	
		Note: For CH0	
[4:0] RW		PIF	5'b0

	PWM Period Interrupt Flag	
	When the PWM generates a PWM signal with a specified period, the flag is set to 1; write 1 by software to clear the flag	
	Note: Each bit identifies each channel separately, and controls PW4, PW3, PW2, PW1 and PW0 in sequence from high to low	

23.4.11 Channel 0 Capture Register

bit acc	ess	Instructions	reset value
[31:16] RO		PWM_FCAPDAT	16'h0
		capture falling edge register	
		When there is a falling edge on the input signal, store the current counter value	
[15:0] RO		PWM_RCAPDAT	16'h0
		capture rising edge register	
		When there is a rising edge on the input signal, store the current counter value	

Table 195 PWM channel 0 capture register

23.4.12 Brake Control Register

Table 196 PWM brake control register

bit acc	ess	Instructions	reset value
[31:16]	resei	ve	16'h0
[15:11] RW		BRKCTL	5'b0
		brake mode enable	
		1'b0: Brake mode disabled	
		1'b1: Brake mode active	

		[7:3] corresponds to CH4, CH3, CH2, CH1 and CH0 respectively	
[10:8]	reserve		3'b0
[7:3] RW		BKOD	5'b0
		Brake Output Control Register	
		1'b0: When the brake mode is valid, the PWM output is low	
		1'b1: When the braking mode is valid, the PWM output is high	\bigcirc
		[7:3] corresponds to CH4, CH3, CH2, CH1 and CH0 respectively	,
[2:0]	reserve		3'b0

23.4.13 Clock Divider Register_4

Table 197 PWM clock frequency division register_4

bit acc	ess	Instructions	reset value
[31:16] RW		CLKDIV4	16'h0
		CH4 frequency division counter	
		The frequency division number is determined by the counter value	
		Note: The frequency division range is (0~65535), if no frequency division is required, input 0 or 1.	
[15:8] RW		PERIOD4	8'h0
		CH4 period register value (note: period cannot be greater than 255)	
		"Edge-aligned mode (counter counting method is decrementing)":	
		ÿ PERIOD register value, the period value is (PERIOD + 1)	
		ÿ Duty cycle = (CMP+1)/(PERIOD + 1)	
		ÿ CMP>=PERIOD: PWM output fixed bit high	

		ÿ CMP <period: (cmp+1)<="" (period-cmp),="" high="" is="" level="" low="" pwm="" th="" width=""><th></th></period:>	
		ÿ CMP=0: PWM low level width is PERIOD, high level width is 1;	
		"Middle Alignment Mode":	
		ÿ PERIOD register value: the period is 2*(PERIOD+1)	
		ÿ Duty cycle=(2*CMP+1)/(2*(PERIOD+1))	
		ÿ CMP>PERIOD: PWM keeps high	\bigcirc
		ÿ CMP<=PERIOD: PWM low level=2*(PERIOD-CMP)+1, high level=(2*CMP)+1	
		ÿ CMP=0: PWM low level width is 2*PERIOD+1, high level width is 1.	
		Note: In "middle aligned mode", the number of cycles should not be 255.	
		No matter which alignment mode is selected, the channel period is determined by the frequency division number (N) and the number of periods (P),	
		That is: the input clock is 40MHz, the clock frequency f_div after frequency division is: f_div = 40MHz/N, N is divided	
		Frequency (16bit). The output frequency f_output is: f_output = f_div / P, where P is the number of cycles.	
		Note: In PWM mode, when the counter is set to edge-aligned mode, it is necessary to set the counting mode to decrement	
		Way.	
[7:0] RW		CH4 generation cycle number	8'h0
		Set the number of PWM4 cycles to PNUM4, when the PWM generates PNUM4 PWM signals,	
1	\sim	Stop generating signals while triggering an interrupt and setting the interrupt status word	

23.4.14 Channel 4 Control Register_1

Table 198 PWM channel 4 control register_1

bit acc	ess	Instructions	reset value
[31:16]	resei	ve	16'h0

[15:8] RW		CMP4	8'h0
		CH4 period register value	
		"Edge-aligned mode (counter counting method is decrementing)":	
		ÿ PERIOD register value, the period value is (PERIOD + 1)	
		ÿ Duty cycle = (CMP+1)/(PERIOD + 1)	
		ÿ CMP>=PERIOD: PWM output fixed bit high	
		ÿ CMP <period: (cmp+1)<="" (period-cmp),="" high="" is="" level="" low="" pwm="" td="" width=""><td></td></period:>	
		ÿ CMP=0: PWM low level width is PERIOD, high level width is 1;	
		"Middle Alignment Mode":	
		ÿ PERIOD register value: the period is 2*(PERIOD+1)	
		ÿ Duty cycle=(2*CMP+1)/2*(PERIOD+1)	
		ÿ CMP>PERIOD: PWM keeps high	
		ÿ CMP<=PERIOD: PWM low level=2*(PERIOD-CMP)+1, high level=(2*CMP)+1	
		ÿ CMP=0: PWM low level width is 2*PERIOD+1, high level width is 1.	
		No matter which alignment mode is selected, the channel period is determined by the frequency division number (N) and the period number (P), namely:	
		The input clock is 40MHz, the clock frequency f_div after frequency division is: f_div = 40MHz/N, N is the frequency division number	
	$\langle \rangle$	(16bit). The output frequency f_output is: f_output = f_div / P, where P is the number of cycles.	
		Note: In PWM mode, when the counter is set to edge-aligned mode, it is necessary to set the counting mode to decrement	
		Way.	
[7:5]	reserve		3'b0
[4:3] RW		CNTTYPE4	2'b0
		CH4 counter counting mode	

97	1		
		2'b00: Edge-aligned mode (the counter counts up, only for capture mode)	
		2'b01: Edge-aligned mode (the counter counts down, only for PWM mode)	
		2'b10: Center-aligned mode (PWM mode only)	
		Note: In PWM mode, when the counter is set to edge-aligned mode, it is necessary to set the counting mode to decrement	
		Way.	
[2]	reserve		1'b0
[1]	RW	CNTMODE4	1'b0
		CH4 generation cycle mode	<i>c</i>
		1'b0: one-shot mode	
		1'b1: autoload mode	
		Note: During the change of CNTMODE, PWM_CMPDAT is reset to zero	
[0]	RW	PINV4	1'b0
		CH4 output signal polarity enable	
		1'b0: PWM output polarity inversion disabled	
		1'b1: PWM output polarity inversion enable	
	S		

23.4.15 Channel 4 Capture Register

Table 199 PWM channel 4 capture register

bit acc	ess	Instructions	reset value
[31:16] RO		PWM_FCAP2DAT	16'h0
		capture falling edge register	
		When there is a falling edge on the input signal, store the current counter value	

[15:0] RO	PWM_RCAP2DAT	16'h0
	capture rising edge register	
	When there is a rising edge on the input signal, store the current counter value	

23.4.16 Channel 4 Control Register_2

Table 200 PWM channel 4 control register_2

bit ac	cess	Instructions	reset value
[31:11]	reser	ve	21'h0
[10]	RW	DMA_request2_mask	1'b0
		DMA_request2 enable	
		1'b0: DMA_request2 invalid	
		1'b1: DMA_request2 valid	
		Note: only for CH4	
[9]	RW	FLIEN2	1'b0
		Falling edge buffer interrupt enable bit	
		i bo: Palling edge buner interrupt is invalid	
	•	1'b1: Falling edge buffer interrupt is valid	
	$\langle \rangle$	Note: only for CH4	
[8]	RW	RLIEN2	1'b0
		Rising edge buffer interrupt enable bit	
		1'b0: Rising buffer interrupt invalid	
		1'b1: Rising edge buffer interrupt is valid	
		Note: only for CH4	

[7]	RW	SURFACE2	1'b0
		counter overflow flag	
		1'b0: capture mode, the counter does not overflow during the counter counting process	
		1'b1: capture mode, counter overflow during counter counting	
		Note: When the user clears CFLIF or CRLIF, this bit will also be cleared at the same time	
		Note: only for CH4	\bigcirc
[6]	RW	FLIFOV2	1'b0
		Falling edge delay interrupt flags overrun status	
		1'b0: When CFILF is 1, no falling edge delay interrupt will be generated	
		1'b1: When CFILF is 1, falling edge delay interrupt occurred again	
		Note: When the user clears CFILF, this bit is also cleared at the same time	
		Note: only for CH4	
[5]	RW	RLIFOV2	1'b0
		Rising edge delay interrupt flags overrun status	
		1'b0: When CRILF is 1, no rising edge delay interrupt will be generated	
		1'b1: When CRILF is 1, another rising edge delay interrupt occurs	
1	$\langle \rangle$	Note: When the user clears CRILF, this bit is also cleared at the same time	
		Note: only for CH4	
[4]	RW	CFLIF2	1'b0
		Capture falling edge interrupt flag	
		1'b0: No falling edge captured	
		1'b1: When a falling edge is captured, this bit is set to 1	

		Note: By writing 1, this flag is cleared	
		Note: only for CH4	
[3]	RW	CRLIF2	1'b0
		Capture rising edge interrupt flag	
		1'b0: rising edge not captured	
		1'b1: When a rising edge is captured, this bit is set to 1	
		Note: By writing 1, this flag is cleared	
		Note: only for CH4	
[2]	RW	POEN2	1'b0
		PWM pin output enable bit	
		1'b0: PWM pin is set to output state	
		1'b1: PWM pins are tri-stated	
		Note: only for CH4	
[1]	RW	CPEN2	1'b0
		Capture function enable flag	
		1'b0: CH4 capture function is invalid, RCAPDAT and FCAPDAT values will not be updated;	
	Δ	1'b1: CH4 capture function is valid, capture and latch the PWM counter, store in RCAPDAT (rising	
	1	edge latch) and FCAPDAT (falling edge latch)	
		Note: only for CH4	
[0]	RW	CAPINV2	1'b0
		Capture reverse enable flag	
		1'b0: capture mode input signal reverse invalid	

	1'b1: The reverse of the input signal in capture mode is valid, and the input signal is reversed	
	Note: only for CH4	

24 QFLASH controller

24.1 Function overview

W800 has a built-in QFLASH controller, which provides bus-based QFLASH read, write, and erase operations, and provides access to the system bus and data bus

Arbitration, realize QFLASH read operation in CACHE mode.

24.2 Main Features

ÿ Provide bus access FLASH interface

ÿ Support access to FLASH by directly sending SPI commands through register configuration

ÿ Support 24-bit or 32-bit address access to FLASH

ÿ Supports automatic decryption and reading of codes and data stored in FLASH

24.3 Functional Description

24.3.1 Bus Access

The address of FLASH in the system starts from 0x08000000, and the address space can be read directly.

24.3.2 Register Access

By configuring the registers, you can directly send SPI commands to FLASH to achieve more flexible access to FLASH, and support most

Divide the control command of FLASH.

24.3.3 Command Configuration and Startup

Write the control command code of Flash into the command bit of the register FLASH_CMD, and configure the register according to the command format

Other bits, for example, if there are address bits in the command, set the address bit to 1. If there is data in the command, the DAT bit must be set to 1, with

Body reference register description.

After the command configuration is completed, set the command_b bit of the CMD_START register to 1, and the controller starts to send the command to the FLASH.

24.3.3.1 Communication mode and configuration

First send commands to FLASH to configure FLASH as QIO or QPI mode, and then configure QIOM or QPIM of FLASH controller

When the bit is set to 1, it can use QIO mode or QPI mode to communicate with FLASH.

24.3.3.2 Data Caching

When reading and writing data to FLASH through registers, use the storage space at address 0x4000 0000 ~ 0x4000 03ff as the data

Data cache, this section of address space is also used as the data cache used by the RSA encryption and decryption module. When reading data, the controller will read from FLASH

The output data is sequentially stored in the address space starting from 0x4000 0000 for caching. When writing data to FLASH, it is also from 0x4000

0000 start to read data and send to flash.

24.3.3.3 Read Operation

Each read operation can read up to 256 bytes of data, and can read data in any position of QFlash.

After the read operation command is started, the data is stored in the cache without waiting or querying.

The operation process is shown in the figure

24.3.3.4 Write Operations

The following commands are all write operations:

24.4 Register Description

24.4.1 Register List

14	offset address name		abbreviation	describe	Defaults
	0X0000_0000 command	l information register	CMD_INFO	Command and data words required for QFLASH operation	0X0000_0000
	0X0000_0004 Comman	d start register	CMD_START command st	art	0X0000_0000
	0X0000_0008 Flash cor	trol register Flash_CR		QFLASH operation mode control	0X0000_0000
	0X0000_000C Remap F	tegister	Remap	Remap option control	0X0000_0000
	0X0000_0010 ADDR re	gister	Flash_ADDR operation ad	dress	0X0000_0000
	0X0000_0014 decryptio	n control register	DECRYPT_CR Firmware	confidential mode control	0X0000_0000
	0X0000_0018 decryptio	h status register	DECRYPT_STA firmware	decryption status;	0X0000_0000
				Used to cache QFLASH read and write data or	0X0000_0000
				Or RSA encryption and decryption data. This memory is	
		Read and write data cache	RSA BUE	The QFLASH controller is shared with the RSA module	*,
				Therefore, QFLASH read and write and RSA operation	1

Table 201 QFLASH controller register list

24.4.2 Command Information Register

0X0000_0600

Table 202 QFLASH command information register

Ca

Add mutual exclusion protection

bit acces	5	Instructions	reset value
-----------	---	--------------	-------------

Winner Micro 联盛德微电子

[31]	RW 1: Ind	V 1: Ind cates that CMD_START carries Address, and the lower 20 bits of the Address are stored in the CMD_START register			
		bit, the upper 4 bits of the Address are fixed at 0, a total of 24 bits			
[30]	RW 1: Ind	cates that the CRM in the CMD_START register carries content	1'b0		
[29]	RW 1: Ins	ruct CMD_INFO to carry Dummy cycle	1'b0		
[28:26] RW i	ndicates how	many Dummy cycles CMD_INFO carries after its content +1	3'b0		
[25:16] RW i	ndicates how	many bytes of data CMD_INFO carries after its content +1	10'b0		
[15]	RW 1: Ind	cates that CMD_INFO carries data	1'b0		
[14]	RW 1: Indic	ates that the command filled in the current CMD_INFO command field is a read command, and the command includes RDSR, FR, QIOFR,	1'b0		
		RDPDRID, RSR, etc.			
[13]	RW 1: Indic	ates that the command filled in the current CMD_INFO command field is a WRSR command	1'b0		
[12]	RW 1: Indic	ates that the command filled in the current CMD_INFO command field is a PP command	1'b0		
[11]	RW 1: Indic	ates that the command filled in the current CMD_INFO command field is an SE command	1'b0		
[10]	RW 1: Indic	ates that the command filled in the current CMD_INFO command field is a BE command	1'b0		
[9]	RW 1: Indic	ates that the command filled in the current CMD_INFO command field is an HBE command	1'b0		
[8]	RW 1: Indic	ates that the command filled in the current CMD_INFO command field is a CE command	1'b0		
[7 : 0] RW C	MD_INFO co	mmand field, fill in the QFlash command, please refer to the QFlash chip manual.	8'b0		

24.4.3 Command Enable Register

Table 203 QFLASH command start register

bit acce	ess	Instructions	reset value
[31:29] RO		Reserved	3'b0

[28]	RW is set to 1	to start the command, after the command operation is completed, it will be cleared to 0 by hardware.	1'b0
[27: 8] RW A	ddress[19:0]: If the A flag in the command register is 1, the lower 20 bits of Address are stored here. 20'b0	
[7 : 0] RW C	RM[7:0]: If t	he CRM flag in the command register is 1, store the CRM content here.	8'b0

24.5 Common Commands of QFLASH

Table 204 QFALSH common commands					
command name	Command word	command abbreviation			
Write Enable	06H	WREN			
Write Disable	04H	WURDI			
Read Status	05H	RDSR			
Write Status	01H	WRSR			
	/				
Fast Read	0BH	FR			
Quad IO Fast Read	EBA	QIOFR			
• • •					
Page Program	02H	PP			
Sector Erase	20H	SE			

For other commands, refer to the relevant manuals of QFLASH.

25 PSRAM Interface Controller

25.1 Function overview

W800 has a PSRAM controller with built-in SPI/QSPI interface, supports external PSRAM device access, and provides PSRAM read

write erase operation. The highest read and write speed is 80MHz.

25.2 Main Features

ÿ Supports read and write access to external PSRAM

ÿ Configurable as SPI and QSPI

ÿ SPI/QSPI clock frequency can be configured

ÿ Support BURST INC mode access

ÿ Support PSRAM semi-sleep mode

25.3 Functional description

The full name of PSRAM is Pseudo static random access memory, which refers to pseudo-static random access memory. Comparable to traditional SRAM

It has the advantages of small package, large capacity, and low cost. It is mainly used for data caching in IoT applications. The interface is mostly SPI, QSPI

Wait. The interface pins mainly include clock signal SCK, chip select signal CS and 4 bidirectional data IOs. The PSRAM controller provided by W800 can

It is accessed by the bus mode of PSRAM supporting SPI/QSPI interface, the maximum working clock rate is 80MHz, and the maximum capacity supports 64Mb.

25.3.1 Pin Description

SCLK: SPI interface clock, the SCLK period is set by PSRAM_CTRL[7:4], the minimum frequency division value that can be set is 3, and the default is AHB

Clock divided by 4.

CS: SPI interface chip select signal

SIO0: SPI mode data input, QSPI mode SD[0]

SIO1: SPI mode data output, QSPI mode SD[1]

SIO2: QSPI mode SD[2]

SIO3: QSPI mode SD[3]

25.3.2 Access Mode Settings

The PSRAM controller supports two access modes of external PSRAM, SPI and four-wire QSPI, and the default is SPI. by setting

PSRAM_CTRL[1] configures the SPI mode.

PSRAM_CTRL[1] defaults to 0, that is, SPI mode. At this time, it takes 64 SCLK cycles to complete a write operation, and it takes 64 SCLK cycles to complete a read operation.

It takes 72 SCLK cycles.

If PSRAM works in SPI mode, when writing 1 to PSRAM_CTRL[1], the controller will send command 35H to PSRAM,

When reading PSRAM_CTRL[1] is 1, it means that the command is sent and PSRAM enters QPI mode. At this time, a write operation needs to be completed

16 SCLK cycles, 22 SCLK cycles are required to complete a read operation.

If PSRAM works in QPI mode, when writing 0 to PSRAM_CTRL[1], the controller will send command F5H to PSRAM,

When reading PSRAM_CTRL[1] is 0, it means that the command is sent and PSRAM enters SPI mode.

Setting the PSRAM working mode must be done after the initialization operation is completed, and cannot be set at the same time.

25.3.3 PSRAM Initialization

Before the first use, after the PSRAM is powered on and stabilized, write 1 to the register PSRAM_CTRL[0] to start the PSRAM reset initialization

Operation, that is, send 66H and 99H commands to PSRAM. By default, SPI mode is used to send, that is, 8 SCLK + tCPH + 8 are required

SCLK time. After the initialization is completed, the hardware automatically clears PSRAM_CTRL[0].

Initialization restores the PSRAM to SPI mode.

The recommended initialization process is:

ÿ Write PSRAM_CTRL[0] to 1

ÿ Wait until PSRAM_CTRL[0] is automatically cleared

(3) Reset the PSRAM controller by soft reset

ÿ Reset other required parameters of PSRAM_CTRL

25.3.4 PSRAM access method

The way to read and write PSRAM is the same as that of ordinary SRAM, that is, write/read data to the corresponding bus address.

25.3.5 BURST Function

By setting PSRAM_CTRL[2], the controller can support the BURST initiated by the AHB bus, that is, when the HBURST on the AHB bus is

When 1/3/5/7, it means that the AHB bus starts a continuous read/write address increment. At this time, in order to improve the access speed of PSRAM, the control

After reading/writing a word, the device does not pull CS high, but directly reads/writes the data of the next word.

The OVERTIMER register is used to set the maximum time for CS to be low, and the unit is the number of cycles of HCLK. Every time a BURST operation is started,

The internal counter starts counting from 0. When the counter value is greater than the set value, the controller will automatically stop after reading/writing the current word.

BURST operation, directly change CS to high level, if there is still data on the AHB bus that needs to be read/written at this time, it will be regarded as a separate WORD

conduct.

PSRAM controller does not support BURST in WRAP form, if accessing PSRAM will use WRAP BURST, please set

PSRAM_CTRL[2] is set to 0.

25.4 Register Description

25.4.1 Register List

Table 205 PSRAM controller register list

offset address name	abbreviation	describe	Defaults
0X0000_0000 Control Register	PSRAM_CTRL	PSRAM controller settings	0X0000_0000
0X0000_0004 Timeout Control Register	OVERTIMER	CS timeout control	0X0000_0000

25.4.2 Command Information Register

bit acces	s	Instructions	reset value
[31:12] RO		RSV	'b0
[11]	RW HSM,	Halfsleep mode enabled	1'b0
		1: Enable PSRAM semi-sleep mode	
		0: Clear semi-sleep mode	
[10:8] RW tCF	PH, CS High I	evel minimum time setting, the unit is the number of AHB clock cycles, must be greater than 1, the specific time depends on	3'd6
	$\langle \cdot \rangle$	According to the instructions in the same psram manual, it is not clear that the default value can not be modified	
[7:4]	RW SPI div	ider setting	4'd4
		It can only be configured as a value above 2, and the written value is the multiple of the frequency division	
[3]	RO	RSV	
[2]	RW INC_E	N BURST function enable	1'b0
		1: Support the BURST function on the AHB bus	
		0: does not support the BURST function	

Table 206 PSRAM Control Setting Register

[1]	RW QUAI		1'b0
		Write 1 to enable QPI mode of PSRAM, write 0 to enable SPI mode	
		Read this flag bit to know which mode the current PSRAM is in.	
[0]	RW PSRA	M reset	1'b0
		Writing 1 starts the reset operation of PSRAM, and it is automatically cleared after reset.	

25.4.3 Timeout Control Register

Table 207 CS timeout control register

bit acce	SS	Instructions	reset value
[11:0] RW tir	neout registe	er setting, set the maximum time of CS low for BURST mode	12'd0

26 ADC

26.1 ADC Functional Overview

The acquisition module based on Sigma-Delta ADC completes the acquisition of up to 4 channels of analog signals, and the sampling rate is controlled by an external input clock.

It can collect input voltage and chip temperature, and supports input calibration and temperature compensation calibration.

26.2 ADC Main Features

ÿ Support up to 4 channels of data acquisition

ÿ Support DMA module for data buffering;

ÿ Support interrupt interactive mode;

ÿ Supports the comparison function between collected data and input data

ÿ Maximum sampling frequency 1KHz;

ÿ Support single-ended input mode and differential input mode;

26.3 ADC Functional Description

26.3.1 Basic module structure

The ADC module is a PGA+SDADC structure. After the input signal is pre-amplified by the PGA, it is input to the SDADC for processing. The SDADC design

It is 16bit ADC. It should be noted that the on-chip ADC is powered by 2.5V LDO. In order to protect the internal circuit, the input signal must be fully

Vinmax < 2.5V, other restrictions, see section 26.3.8 for details.

26.3.2 Channel Selection

Register 0x04[11:8] provides the channel selection function. The ADC of W800 provides the acquisition function of 4-channel signals. By setting the register

0x04[11:8] can select any of the 4 channels for single-ended signal data acquisition, or select 2 pairs of differential pairs that are pre-paired among the 4 channels

Separate channels for differential signal data acquisition. For specific channel selection, please refer to the register description.

In addition to 4 channels, the ADC module also provides temperature detection, voltage detection and offset calibration functions. Corresponding to the channel selection respectively

4'b1100ÿ4'b1101ÿ4'b1110.

If you need to use the corresponding function, configure the channel selection as the corresponding channel, and then follow the procedure described above.

26.3.3 Data Comparison

The ADC module provides the data comparison function, and the switch of this function can be set through BIIT[5] of the configuration register 0x10.

The user can configure the value to be compared through BIT[17:0] of the result register 0x18. This value needs to be converted to 18bit signed number, the most

The high bit is the sign bit. BIT[6] of ADC configuration register 0x10 can set the direction of data comparison. When this bit is 0, if ADC

If the collected value is greater than or equal to Comp_data, INT_CMP will be set to 1, and an interrupt will be generated; when this bit is 1, only

When the value collected by ADC is less than Comp_data, INT_CMP will be set to 1 and an interrupt will be generated.

26.3.4 PGA Gain Adjustment Description

BIT[8:4] of register address 0X08, 5-bit gain control signal, where

0X08[8:7]=GAIN_CTRL_PGA<4:3> (corresponding to GAIN2)

0X08[6:4]=GAIN_CTRL_PGA<2:0> (corresponding to GAIN1, 110 and 111 are not used)

PGA overall gain GAIN_PGA=GAN1*GAIN2

[8:7]	00	01	10	11
000	1	2	3	4
001	16	32	48	64
010	32	64	96	128
011	64	128	192	256
100	128	256	384	512
101	256	512	768	1024

PGA Gain Configuration Table (expressed in magnification)

According to the simulation results, for the same magnification, it is recommended to use the configuration with a larger GAIN2 magnification first.

26.3.5 VCMIN Adjustment Description for Single-Ended Mode

The internal VCMIN voltage of PGA, in single-ended mode, is used as the input negative terminal of the op amp.

The purpose of adjusting VCMIN is to adapt to various signal sources with different bias points, and to prevent the PGA output from being saturated at certain bias points that are too high or too low.

and.

BIT[16:11] of register address 0X40000D20, the default is 100000, that is, VCMIN default=1.311V, stepÿ39.1mV

Figure 37 Principle of single-ended working mode

26.3.6 Bypass mode

Bypass_pga register address 0X08 BIT[3], default 0, no bypass, PGA works normally; if it is 1, PGA is bypassed at this time,

The external signal source is directly connected to the SDADC input terminal, which is mainly used for internal module testing, and no bypass is required for normal use.

Bypass_ref Register address 0X08 BIT[2], default 0, no bypass, SDADC works normally; if it is 1, SDADC internal

The internal ref is bypassed, and an external reference voltage needs to be added through the test pin, which is mainly used for internal module testing, and bypass is not required for normal use.

26.3.7 Supplementary Description of SDADC Output Code

The SDADC output result is stored in the ADC_RESULT register, register address 0X00 BIT[17:0].

The output code of SDADC itself is an unsigned number, because the number has processed the output code of SDADC (the highest bit is reversed), it becomes signed

number, and the 0 code of the SDADC output code is not fixed (and not exactly 10 0000 0000 0000), so directly use the register

It is wrong to use the value of the device for subsequent calculations.

When calculating the output result of SDADC, the value of the register ADC_RESULT[17:0] (the read value is a hexadecimal number), the software needs to first

Convert back to an unsigned number (invert the highest bit of the binary number ADC_RESULT[17]), and then perform subsequent calculations.

The SDADC designed this time is a 12bit ADC. The ADC conversion data is processed in the design, and the actual effective number of registers is 16bit.

The register data is 18bit, and the lowest two bits are added through the digital filter, and the 16bit number is converted into an 18bit number (18bit numberÿ16bit number*4),

So the effective number of digits is the high 16 bits (that is, ADC_RESULT[17:2]).

After converting the read value back to an unsigned number, the calculation involving LSB also requires software to convert 18bit data into 16bit data, that is, discard the last

The lower two bits of data (ADC_RESULT[1:0]), only retain the upper 16bit (turn back to ADC_RESULT[17:2] of the unsigned number), and then use 16bit

The data is used for subsequent calculations. At this time, the simulation result of LSB is approximately equal to 68.5uV (it needs to be tested to determine the actual LSB of the chip).

26.3.8 Input Signal Voltage Range

Because the NTO version PGA and SDADC are powered by 2.5V LDO, in order to prevent internal circuit saturation, the input signal voltage range is limited

system.

Assuming that the input differential signals are Vinp and Vinn (in single-ended mode, the signal Vinn is VCMIN), then the input differential voltage Vdiff=Vinp

Vinn, input common mode voltage Vcm=(Vinp+Vinn)/2. PGA first-stage gain GAIN1, second-stage gain GAIN2, PGA overall gain

Yield GAIN_PGA=GAN1*GAIN2 (see Section 2.2.2 for details).

The input signal must meet the following constraints at the same time:

0V<Vinp<2.5Vÿ0V<Vinn<2.5Vÿ

0V<Vcm-(Vdiff*GAIN1)/2ÿ

Vcm+(Vdiff*GAIN1)/2<2.5Vÿ

0V<1.2V-(Vdiff*GAIN_PGA)/2ÿ

1.2V+(Vdiff*GAIN_PGA)/2<2.5Vÿ

If the approximate range of the input signal is known, it can be directly substituted into the above formula to calculate and select the available gain setting.

For unknown input signals, you can first use the x1 gain setting to determine the approximate range, and then substitute into the above formula for calculation to select the available gain setting.

26.4 Register Configuration for Typical Use Cases

The following configuration words are all hexadecimal numbers, and the high-order 0 has been omitted.

26.4.1 Offset measurement

1. Set the working state of the module, set the register 0X04 to 0xE03, open the channel selection (offset detection) / SDADC_CHOP enable

enable/SDADC enable/LDO enable

2. Set module register 0X08=0x3, PGA is x1 gain configuration/PGA_CHOP enable/PGA enable. Among them, the gain configuration

0X08 BIT[8:4] should be modified according to the requirements of the test (that is, what gain configuration is used for the subsequent test, offset measurement

also use the same gain configuration when

3. Set the clock status 0X40000E14 BIT[15:8]=0x28, and confirm that the SDADC clock configuration is 1MHz. The default value after the chip is powered on

It is 0x28, if there is no change, this step can be omitted

4. Wait for 2ms, read the output result of the ADC_RESULT register, refer to Section 26.3.7, the software needs to convert back to unsigned number (most

The high bit ADC_RESULT[17] is negated), and then the lowest two bits are discarded, and only the high 16bit data is kept. Repeat the reading a total of 10 times, the reading interval is 2ms,

Calculate the average number of codes and record it as code_offset

26.4.2 Differential Input Mode

1. First measure the offset according to Section 26.4.1 to get the code_offset

2. Set module register 0X04=0x803, channel selection (positive channel 0, negative channel 1)/SDADC_CHOP enable

/SDADC enable/LDO enable. The channel selection 0X04[11:8] can be configured as differential input of other channels, refer to 26.3.2

Festival;

3. Set module register 0X08=0x3, PGA is x1 gain configuration/PGA_CHOP enable/PGA enable. Among them, the gain configuration

0X08[8:4] Select the appropriate configuration according to the input signal voltage range, refer to section 26.3.4 and 26.3.8

4. Set the clock status 0X40000E14[15:8]=0x28, and confirm that the SDADC clock configuration is 1MHz. After the chip is powered on, the default value is

28. If there is no change, this step can be omitted

5. Wait for 2ms, read the output result of ADC_RESULT register, register address 0X00[17:0]. Referring to Section 26.3.7, requires

The software first converts back to an unsigned number (the highest bit ADC_RESULT[17] is inverted), and then discards the lowest two bits, and only keeps the high 16bit data. 6.

Repeat reading a total of 10 times, the reading interval is 2ms, and the average value of the calculated code number is recorded as code_out

7. The differential input signal Vindiff=(code_out-code_offset)*LSB/GAIN_PGA, where LSB is approximately equal to

68.5uV

26.4.3 SINGLE-ENDED INPUT MODE

1. First measure the offset according to section 26.4.1 to get code_offset;

2. Set module register 0X04=0x3, channel selection (positive channel 0, negative VCMIN)/SDADC_CHOP enable/SDADC

Enable/LDO enable. The channel selection 0X04[11:8] can be configured as single-ended input of other channels, refer to section 26.3.2

Set module register 0X408=0x3, PGA is x1 gain configuration/PGA_CHOP enable/PGA enable. Among them, VCMIN configuration

0X40000D20[16:11] and gain configuration 0X08[8:4], select the appropriate configuration according to the input signal voltage range, refer to 26.3.4,

Sections 26.3.5 and 26.3.8

3. Set the clock status 0X40000E14[15:8]=0x28, and confirm that the SDADC clock configuration is 1MHz. After the chip is powered on, the default value is

28. If there is no change, this step can be omitted;

4. Wait for 2ms, read the output result of ADC_RESULT register, register address 0X00[17:0]. Referring to Section 26.3.7, requires

The software first converts back to an unsigned number (the highest bit ADC_RESULT[17] is inverted), and then discards the lowest two bits, and only keeps the high 16bit data. repeat

Read a total of 10 times, the reading interval is 2ms, and the average value of the calculated code number is recorded as code_out;

5. Single-ended mode input signal vin_single=(code_out-code_offset)*LSB/ GAIN_PGA+VCMIN, where LSB is based on

The simulation result is approximately equal to 68.5uV, and the default value of VCMIN is 1.311V;

26.4.4 Temperature Detection Mode

1. Set module register 0X04=0xC03, channel selection (temperature detection)/SDADC_CHOP enable/SDADC enable/LDO enable

can;

2. Set module register 0X08=0x183, PGA is x4 gain configuration/PGA_CHOP enable/PGA enable;

3. Set the clock status 0X40000E14[15:8]=0x28, and confirm that the SDADC clock configuration is 1MHz. After the chip is powered on, the default value is

28. If there is no change, this step can be omitted;

4. Set the working status of the tempsensor module to 0X0C=0x1, enable TempSensor/cal_offset_temp12=0,

TempSensor configured for x2 gain;

5. Wait for 2ms, read the output result of the ADC_RESULT register, refer to section 26.3.7, the software needs to convert back to unsigned number (most

The high bit ADC_RESULT[17] is inverted), recorded as the output code code_out1;

6. Set the working status of the tempsensor module to 0X0C=0x3, enable TempSensor/cal_offset_temp12=1,

TempSensor is configured for x2 gain;

7. Wait for 2ms, read the output result of the ADC_RESULT register, refer to Section 26.3.7, the software needs to convert back to unsigned number (most

The high bit ADC_RESULT[17] is reversed), recorded as the output code code_out2;

8. Repeat steps 4 to 7 for a total of 10 times to calculate the average values of code_out1 and code_out2 code_out1avg and

code_out2avgÿ

9. Calculate Vtemp=(code_out1avg-code_out2avg)/16 from the above steps, and TempSensor output voltage=Vtemp

Number of codes * (LSB/4), where LSB is approximately equal to 68.5uV according to the simulation result (this LSB is the simulation result of 16bit, the temperature detection above

In steps 5 and 7, the read is 18bit data, 18bit number ÿ 16bit number * 4, then the least significant bit corresponding to 18bit ÿ LSB/4)

10. According to the test results, a fitting formula has been sorted out, which can directly estimate the chip temperature

Vtemp code=(15.548*chip temperature)+4444.1

Substitute the Vtemp calculated in step 9 into the above formula to get the chip temperature. (Note that the fitting formula is in decimal)

In addition, add an optional measure to improve accuracy:

For different chips, assuming that the coefficient k in the fitting formula y=kx+b remains unchanged (both are 15.548), the coefficient b of different chips has certain differences.

According to the instructions above, first calculate the Vtemp code number at a known ambient temperature (for example, room temperature 25°C), and substitute it into the Vtemp code

=(15.548*(known ambient temperature+11.8))+b, get the coefficient b of different chips, save it in rom or flash, replace the above formula

4444.1. Then, the temperature is calculated according to the coefficients of the new formula, which can improve the temperature detection accuracy of different chips to a certain extent.

26.4.5 Voltage Detection Mode

1. First measure the offset according to section 26.4.1 to get code_offset;

2. Set module register 0X04=0xD03, channel selection (voltage detection)/SDADC_CHOP enable/SDADC enable/LDO enable

can

3. Set module register 0X08=0x83, PGA is x2 gain configuration/PGA_CHOP enable/PGA enable.

4. Set the clock status 0X40000E14[15:8]=28, and confirm that the SDADC clock configuration is 1MHz. The default value is 28 after the chip is powered on.

If there is no change, this step can be omitted

5. Wait for 2ms, read the output result of the ADC_RESULT register, refer to Section 26.3.7, the software needs to convert back to unsigned number (most

The high bit ADC_RESULT[17] is negated), and then the lowest two bits are discarded, and only the high 16bit data is kept. Repeat the reading a total of 10 times, the reading interval is 2ms,

Calculate the average value of the number of codes and record it as code_out;

6. Chip power supply voltage Vpower=(code_out-code_offset)*LSB/2+1.2V, where LSB is approximately equal to

68.5uV

26.5 ADC Register Description

26.5.1 Register List

Table 208 ADC register list

offset address name		abbreviation	describe	reset value
0X0000	ADC result register		Store ADC acquisition value and data comparison	0X0000_0000
	ADC result register	ADC_KESULI	value	
0X0004	ADC Analog Registers	ADC_ANA_CTRL	Configure ADC related functions	0X0000_0004
0X0008	PGA configuration register	PGA_CTRL	Configure PGA related functions;	0x0000_0000
0X000c	TempSensor Configuration Registration		Configure temperature sensor related fur	ctions; 0x0000_0000
	device			
0x0010	ADC configuration register	ADC_CTRL	Configure ADC module functions;	0x0050_0500
0x0014	ADC Interrupt Register	ADC_INT_STATUS	ADC module interrupt status register; 0x0	000_0000
0x0018	compare value register	CMP_VALUE	Compare Threshold Settings	0x0000_0000

26.5.2 ADC Result Register

Table 209 ADC result register

bit acces	S	Instructions	reset value
[17:0] RW AE	C conversio	n result value, the effective bit width is 18bits. Signed number, the most significant bit is the sign bit.	1'b0

26.5.3 ADC Analog Configuration Register

Table 210 ADC configuration register

Bit Access 0	peration Instruc	tions	reset value
		ADC working channel selection signal:	4'b1000
		4'b0000: AIN0 channel works. In DMA mode, corresponding to DMA channel 0 work	
		4'b0001: AIN1 channel works. In DMA mode, corresponding to DMA channel 1 work	
		4'b0010: AIN2 channel works. In DMA mode, corresponding to DMA channel 2 work	
		4'b0011: AIN3 channel works. In DMA mode, corresponding to DMA channel 3 work	
[11 : 8] RW		4'b0100ÿRSV	
		4'b0101ÿRSV	
		4'b0110ÿRSV	
		4'b0111ÿRSV	
		4'b1000: AIN0/AIN1 differential signal input. In DMA mode, corresponding to DMA channel 0 work	
		4'b1001: AIN2/AIN3 differential signal input. In DMA mode, corresponding to DMA channel 2 work	
		4'b1010ÿRSV	
		4'b1011ÿRSV	
	Δ	4'b1100: Temperature sensor input, corresponding to DMA channel 2	
		4'b1101: Voltage detection module input, corresponding to DMA channel 3	
		4'b1110: offset detection input;	
		4'b1111ÿRSV	
[7]	RO	RSV	1'b0
[6:5] RW		chop_enr	2'b00

		LDO chopping signal PD signal	
		chop_ens	1'b0
	5.11	sdadc chopping signal PD signal	
[4]	ĸw	0: enable	
		1: disable	
[3]	RO	RSV	1'b0
		Pd_sdadc	1'b1
(0)	RW	sdadc analog module power-down enable	e
[2]		1: power down	
		0: working	
	RW	Rstn_sdadc	1'b0
[4]		Analog module digital logic part reset signal	
ניז		0: reset	
		1: normal work	
	RW	en_ldo_sdadc	1'b0
[0]		ADC LDO enable	
		0: power down 1: work	

26.5.4 PGA Configuration Register

Table 211 PGA configuration register

Bit Access C	peration Instruc	tions	reset value
		Gain_ctrl_pga	5'd0
[8:4] RW		PGA gain configuration;	
		BIT[8:7] configure GAIN2, BIT[6:4] configure GAIN1, specific gain table refer to Section26.3.4	\bigcirc
		Bypass_pga	1'b0
[3]	RW	pga bypass signal	
		1: bypass pga	
		0: no bypass	
	RW	Bypass_ref	1'b0
[2]		Internal Reference Voltage Bypass Signal	
		1: Bypass internal reference voltage	
		0: no bypass	
		Chop_enp	1'b0
[1]	RW	PGA chop enable signal	
	\mathcal{O}	1: enable	
		0: disable	
[0]		One_because	1'b0
	RW	Pga enable signal	
		1: enable	
		0: disable	

26.5.5 TEMP Configuration Register

Table 212 Temperature Sensor Configuration Register

Bit Access O	peration Instructio	ns	reset value
		Gain_temp	2'd0
		temp gain control	
		Coding Gain	\bigcirc
[5:4] RW		00 2	
		01 4	
		10 6	
		11 8	
[3ÿ2] RO		RSV	2'b0
	DW/	Cal_offset_temp12	1'b0
[1]		TEMPSEN offset calibration function	
		ON_TEMP	1'b0
[0]	RW	1: temp enable	
		0: temp disabled	

26.5.6 ADC Function Configuration Register

Table 213 Temperature Sensor Configuration Register

Bit Access O	peration Instructio	ns	reset value
[29:20] RW	1	ana_swth_time	10'h050
		After the software switches the data channel, the time required for the analog circuit to remain stable, the default is 80 pclks, which is 2us	

[19ÿ18] RO		RSV	2'b0
		ana_heat_time	10'h050
[17ÿ8] RW		After the software starts adc_start, the time required for the analog circuit to remain stable, the default is 80 pclks, which is 2us	
[7]	RO	RSV	1'b0
[6]	RW	Cmp_pol	1'b0
		0: Interrupt when adc_result >=cmp_value	\bigcirc
		1: Interrupt when adc_result <cmp_value< td=""><td>7</td></cmp_value<>	7
[5]	RW	Cmp_int_ena	1'b0
		1: compare interrupt enable	
		0: compare interrupt is not enabled	
[4]	RW	Adc_cmp_enable	1'b0
		1: ADC compare function enable	
		0: adc compare function disabled	
[3:2]	RO	Reserved	2'b0
[1]	RW	Adc_int_ena	1'b0
		1: ADC data conversion interrupt enable	
	1		
	$\langle D \rangle$	0: ADC data conversion interrupt is not enabled	
[0]	RW	Adc_dma_enable	1'b0
		1: dma enable	
		0: DMA disabled	

26.5.7 ADC Interrupt Status Register

Table 214 ADC Interrupt Status Register

Bit Access 0	peration Instruc	tions	reset value
[1]	RW	Cmp_int	1'b0
		Compare interrupt flag bit, hardware set, software write 1 to clear	
[0]	RW	Adc_int	1'b0
		Data conversion complete interrupt, hardware set, software write 1 to clear	

26.5.8 Compare Threshold Register

Table 215 Compare Threshold Register

Bit Access 0	peration Instruc	tions	reset value
[17:0] R/W		Cmp_value	18'h00000
		the value to compare	

27 Touch Sensor

27.1 Overview of module functions

The basic functions of the module are as follows:

ÿ Support up to 16 channels of Touch Sensor scanning;

ÿ Record the scanning results of each Touch Sensor;

ÿ Report scan results through interrupts;

27.2 Function instructions

The touch button module is integrated in the W800 system. The basic principle is that when the button is touched, the capacitance value of the circuit on the button will change, thereby

Affects the output clock frequency in the block. By detecting the frequency of the output clock of the module, it can be judged whether the capacitance value has changed, thereby judging

The state of the key.

The basic function of this digital module is to scan the state of each touch button successively at regular intervals, count and record in the set time window

The status of each key is displayed. If it exceeds the set threshold, it is judged that the button is touched and reported to the MCU system through an interrupt.

		N*T -	
	т ————————————————————————————————————		
AD_CAPDET_CLKOUT			
CLK_40M			

27.2.1 Basic workflow

1. Set the Touch_CR register, configure the scan cycle, scan window, and select the IO to be scanned. Touch_CR in

scan_period is the interval period of each scan, and the unit is 16ms. That is, if the register is set to 10, every 160ms will successively

Scan 16 touch keys. CAPDET_CNT is the window counted when scanning each IO state, that is, N in the above figure. It should be noted that for

To avoid the jitter caused by switching channels, the counting will start at the third pulse after each switching scan IO, so if this register is set

is N, the actual counting window is N-2.

2. Set the counting threshold corresponding to each Touch IO. If the result of the scan exceeds the base number + threshold, the button can be considered to be touched;

3. Enable Touch_CR[0], the module starts to work.

4. After the touch key module is enabled, the hardware will first scan the selected IOs one by one, and store the count value of each IO as the base.

Then scan the selected IO every other scan_period, and store the currently scanned value. After all IO scans are completed, the

The count value of each IO is compared with the base number. If the current value > base number + threshold, the button is considered to be touched. Register 0x44

The corresponding bit in PAD_STATUS will be set to 1 and reported to the system through an interrupt. PAD_STAUS Write 1 to clear 0.

27.3 Register list:

Table 216 Touch Sensor controller register list

offset address name		abbreviation	describe	Defaults
0X0000_0000 Contro	ol Register	Touch_CR	Touch Sensor controller settings	0X0000_0000

0X0000_0004			Threshold control and count value of each touch	key 0X0000_0000
-	Touch button single control Touc	n_Sensor x		
0X0000_0040				
0x0000_0044 interrupt	controller	Int_Source	interrupt controller	0x0000_0000

27.3.1 Touch Sensor Control Register

bit acce	ess	Instructions		
[31:26] RW \$	can_period		6'd10	
		Scan period, the unit is 16ms; for example, if scan_period is set to 6'd10, then the button will be scanned every 160ms		
		key state;		
[25:20] RW (APDET_CN	т	6'd20	
		Select the number of CAPDET output pulses as the counting window.		
		Note: In order to avoid the jitter caused by switching channels, counting will start at the beginning of the third pulse, so this register setting		
		If it is set to N, the actual counting window is N-2. For example, if it is set to 6'd20, the period of 18 CAPDET pulses		
		is the counting window.		
[19:4] RW To	uch Sensor	button selection; scan the touch button status of the corresponding bit.	16'd0	
		0x0000: do not scan;		
		0x0001: scan the first button;		
		0x0002: scan the second button;		

Table 217 Touch Sensor Control Setting Register

		0x0003: Scan the first and second keys;	
		0xFFFF: scan all 16 keys;	
[3:1]	RW RSV		3'd0
	RW touch	button controller enable	1'b0
[0]		1: Enable touch key scanning;	
		0: Disable touch button scanning;	

27.3.2 Touch key single channel control register

Table 218 Touch key single channel setting register

bit acce	SS	Instructions	reset value
[22:8] RO		Touch Sensor 1 count value	14'd0
[7]	RO	RSV	1'b0
[6:0]	RW Touch	Sensor 1 Threshold	7'd50

27.3.3 Interrupt Control Register

Table 219 Touch key interrupt control register

bit acce	ess	Instructions	reset value
	RW INT_E	N	16'd0
[31:16]		When the corresponding bit is 1, it means that the corresponding IO is triggered and an interrupt will be generated;	
		When the corresponding bit is 1, it means that the corresponding IO is triggered and no interrupt will be generated;	

	RW PAD_S	TATUS/INT_SOURCE	16'd0
[15:0]		When the bit is 1, it means that the corresponding PAD is triggered;	
		When the bit is 0, it means that the corresponding PAD is not triggered;	
		write 1 clear 0	

28 W800 security architecture design

28.1 Function overview

XT804 indicates the security feature of bus access through the HPROT signal

	0	1
HPRT[3]	uncacheable	cacheable
HPRT[2]	un-security	security
HPRT[1]	User	super
HPRT[0]	Code	data

W800's support for security architecture is divided into security access control for sram and access control for peripherals.

28.1.1 SRAM Secure Access Controller (SASC)

The first-level bus SRAM, the second-level bus SRAM and FLASH each have a security access controller, and the storage space controlled by each SASC

have the following safety features

ÿ 8 configurable safe zones

ÿ Each security area can be configured with a minimum of 4 bytes

ÿ Security-super with unlimited access to all areas

ÿ If the CPU's access on the AHB bus is rejected, it will generate a false response signal (HRESP=1), from

An access exception is thrown.

 \ddot{y} No exception will be generated if other master devices on the bus, such as DMA, are denied access.

28.1.2 Trusted IP Controller (TIPC)

Hanging on the APB bus, it is used to configure the trust authority of all peripherals including the first-level bus, the second-level bus and the APB bus. If the peripheral

Configured as a trusted device (ip_trust_vld=1), only access on the bus is security (HPROT[2]=1 or PPROT[2]=1)

Only then can the peripherals be accessed normally, otherwise reading and writing will be rejected.

28.2 Security Architecture Block Diagram

28.3 Register Description

28.3.1 SASC Register List

name offset		bit threshold	illustrate	reset value
	address			
		[31:16] Leav	e unused	
		[15:14] sram	region7 configuration properties, same as region0 2'b00	
		[13:12] sram	region6 configuration properties, same as region0 2'b00	
		[11:10] sram	region5 configuration attributes, same as region0 2'b00	
		[9:8] sram re	gion4 configuration attributes, same as region0 2'b00) ×
		[7:6]	sram region3 configuration attribute, same as region0 2'b00	
CAR	0x0	[5:4] sram re	gion2 configuration attributes, same as region0 2'b00	
		[3:2] sram re	gion1 configuration attributes, same as region0 2'b00	
		[1:0]	sram region0 configuration properties	2'b00
			00: un-security-user	
		~	01: un-security-super	
		\sim	10: security-user	
		· · ·	11: security-super	
		31:8 unused	reserved	
		7	region7 attribute control register, same as region0	
CR	0x4	6	region6 attribute control register, same as region0	
	UNT	5	region5 attribute control register, same as region0	
		4	region4 attribute control register, same as region0	
		3	region3 attribute control register, same as region0	

	-			
		2	region2 attribute control register, same as region0	
		1	region1 attribute control register, same as region0	
		0	region0 attribute control register	
			0: attribute is invalid 1: attribute is valid	
		[31:16] Lea	ve unused	
		[15:14] regi	pn7 AP configuration, suitable for un-security	
			user	
		[13:12] regi	pn6 AP configuration, suitable for un-security	
			user	
		[11:10] regi	pn5 AP configuration, suitable for un-security	
			user	
		[9:8]	region4 AP configuration, suitable for un-security	
			user	
AP0	0x8	[7:6]	region3 AP configuration, suitable for un-security	
			user	
		[5:4]	region2 AP configuration, suitable for un-security	
		Y	user	
		[3:2]	region1 AP configuration, suitable for un-security	
			user	
		[1:0]	region0 AP configuration, suitable for un-security	
			user	
			00: R/W 01: RO 10: WO 11: No	

			Access	
		[31:16] Lea	ve unused	
		[15:14] regi	on7 CD configuration for un-security	
			user	
		[13:12] regi	on6 CD configuration, suitable for un-security	
			user	
		[11:10] regi	on5 CD configuration, suitable for un-security	
			user) *
		[9:8]	region4 CD configuration, suitable for un-security	
			user	
		[7:6]	region3 CD configuration, suitable for un-security	
CD0	0xC		user	
		[5:4]	region2 CD configuration, suitable for un-security	
			user	
		[3:2]	region1 CD configuration, suitable for un-security	
A		\geq	user	
		[1:0]	region0 CD configuration, suitable for un-security	
			user	
			00: Date Access , Opcode Close	
			01: Data Access	
			10: Opcode Close	
			11: Data, Opcode all deny	

		[31:16] Lea	ave unused	
		[15:14] reg	ion7 AP configuration, suitable for un-security	
			super	
		[13:12] reg	ion6 AP configuration, suitable for un-security	
			super	
		[11:10] reg	ion5 AP configuration, suitable for un-security	
			super	
		[9:8]	region4 AP configuration, suitable for un-security) >
			super	
AP1	0x10	[7:6]	region3 AP configuration, suitable for un-security	
			super	
		[5:4]	region2 AP configuration, suitable for un-security	
			super	
		[3:2]	region1 AP configuration, suitable for un-security	
			super	
		[1:0]	region0 AP configuration, suitable for un-security	
		Y	super	
			00: R/W 01: RO 10: WO 11: No	
			Access	
		[31:16] Lea	ave unused	
CD1	0x14	[15:14] reg	ion7 CD configuration for un-security	
			super	

		[13:12] reg	ion6 CD configuration, suitable for un-security	
			super	
		[11:10] reg	ion5 CD configuration, suitable for un-security	
			super	
		[9:8]	region4 CD configuration, suitable for un-security	
			super	
		[7:6]	region3 CD configuration, suitable for un-security	
			super) >
		[5:4]	region2 CD configuration, suitable for un-security	
			super	
		[3:2]	region1 CD configuration, suitable for un-security	
			super	
		[1:0]	region0 CD configuration, suitable for un-security	
		~	super	
		\sim	00: Date Access , Opcode Close	
		Ŷ	01: Data Access	
		Y	10: Opcode Close	
			11: Data, Opcode all deny	
		[31:16] Lea	ave unused	
AP2	0x18	[15:14] reg	ion7 AP configuration, for security-user	
	-	[13:12] reg	ion6 AP configuration, for security-user	
		[11:10] reg	ion5 AP configuration, for security-user	

		[9:8]	region4 AP configuration, for security-user	
		[7:6]	region3 AP configuration, suitable for security-user	
		[5:4]	region2 AP configuration, for security-user	
		[3:2]	region1 AP configuration, for security-user	
		[1:0]	region0 AP configuration, for security-user	
			00: R/W 01: RO 10: WO 11: No	
			Access	
		[31:16] Lea	ve unused) 7
		[15:14] regi	on7 CD configuration, for security-user	
		[13:12] regi	on6 CD configuration, for security-user	
		[11:10] regi	on5 CD configuration, for security-user	
		[9:8]	region4 CD configuration, for security-user	
		[7:6]	region3 CD configuration, for security-user	
CD2	0x1C	[5:4]	region2 CD configuration, for security-user	
		[3:2]	region1 CD configuration, for security-user	
		[1:0]	region0 CD configuration, for security-user	
		Y	00: Date Access , Opcode Close	
			01: Data Access	
			10: Opcode Close	
			11: Data, Opcode all deny	
	0	31:n+1 Res	erved	0
		n:8	BAddr0, base address of region0, n and sram are large	

			small related,	
			sram=32kBÿn=20	
			sram=64kB, n=21	
		7:5 reserve	ŧd	3'b000
		4:0	RSizeÿregion0 size	
			00101: 4B	
			00110: 8B	
			·····) >
			10001: 16KB	
			10010: 32KB	
		31:n+1 Re	served	0
	DИ	n:8	Baddr1, region1 base address	
REGIONT		7:5 reserve	ŧd	3'b000
		4:0	region1 size	
		31:n+1 Re	served	0
	00	n:8	region2 base address	
	LO	7:5 reserve	₽d	3'b000
		4:0	region2 size	
		31:n+1 Re	served	0
REGION3 0x2	2C	n:8	region3 base address	
		7:5 reserve	ŧd	3'b000

	4:0	region3 size	
	31:n+1 Res	erved	0
	n:8	region4 base address	
REGION4 0x30	7:5 reserve	d	3'b000
	4:0	region4 size	
	31:n+1 Res	erved	0
	n:8	region5 base address	
	7:5 reserve	d C	3'b000
	4:0	region5 size	
	31:n+1 Res	erved	0
	n:8	region6 base address	
	7:5 reserve	d	3'b000
	4:0	region6 size	
	31:n+1 Res	erved	0
	n:8	region7 base address	
	7:5 reserve	d	3'b000
	4:0	region7 size	
1			

28.3.2 TIPC Register

name offset		bit threshold	illustrate	reset value
	address			
		31:18 unused		0
		17	BT modem trusted attributes	0
			1: trusted 0: not trusted	
		16	I2S Trusted Attributes	0
		15	PWM Trusted Attributes	0
		14	LCD driver trusted attributes	0
		13	RF controller trusted attributes	0
		12	timer trusted attribute	0
ip_trust_vld0 0x0		11	watch dog trusted attributes	0
		10	PORTB trusted attribute	0
		9	PORTA trusted attribute	0
		8	UART5 Trusted Attributes	0
		7	UART4 Trusted Attributes	0
		6	UART3 Trusted Attributes	0
		5	UART2 Trusted Attributes	0
		4	UART1 Trusted Attributes	0
		3	UART0 Trusted Attributes	0

		2	SPI MASTER TRUSTED ATTRIBUTES	0
		1	SAR ADC Trusted Attributes	0
		0	I2C Trusted Attributes	0
		31:18 Unused		0
		17	RF BIST trusted attribute configuration	0
			1: trusted 0: not trusted	
		16	SDIO Wrapper Trusted Attributes	0
		15	SPI_HS trusted attributes	0
		14	SDIO Trusted Attributes	0
		13	unused	0
		12	SEC Credible Attributes	0
		11	MAC Trusted Attributes	0
ip_trust_vld1 0x4		10	BBP Trusted Attributes	0
		9	MMU trusted attributes	0
		8	Clock reset control module trusted attribute 0	
		7	PMU Trusted Attributes	0
	Y	6	BT Trusted Attributes	0
		5	GPSEC Trusted Attributes	0
		4	DMA Trusted Attributes	0
		3	RSA Trusted Attributes	0
		2	PSRAM Controller Trusted Attributes	0
		1	FLASH Controller Trusted Attributes	0

Winner Micro 联盛德微电子

· · · · · · · · · · · · · · · · · · ·			
	0	SDIO HOST Trusted Attributes	0

28.4 Instructions for use

28.4.1 Memory Safe Access (SASC)

28.4.1.1 Register Access Rights

Access to SASC registers follows the following principles:

ÿ The CAR register can only be read and written when the cpu is security-super.

ÿ When the cpu is in un-security-super, it can access the region-related registers configured as un-security-user

device position.

ÿ When the cpu is security-super, all registers can be read and written.

ÿ Registers are not accessible in other cases

For example, when CAR is set to 16'he4e4, it means that region0 and region4 are set as un-security-user, and if cpu

In un-security-super, the cpu can read and write registers REGION0 and REGION4, as well as CR[0], CR[4], APx[1:0],

APx[9:8], CDx[1:0], CDx[9:8]ÿ

28.4.1.2 Setting of Protection Interval Address

Each SASC supports 8 configurable memory protection interval regions, and the base address in REGIONx[31:8] is the one you want to configure

25 to 2 bits of the actual physical address of the storage area. At the same time, the size and base address of Size need to meet the following requirements:

SIZE

00101:4B;

00110: 8B; Baddrx[0] = 0

00111: 16B; Baddrx[1:0] = 0

01000: 32B; Baddrx[2:0] = 0

01001: 64B; Baddrx[3:0] = 0

01010: 128B; Baddrx[4:0] = 0

01011: 256B; Baddrx[5:0] = 0

01100: 512B; Baddrx[6:0] = 0

01101:1KB; Baddrx[7:0] = 0

01110: 2KB; Baddrx[8:0] = 0

01111:4KB; Baddrx[9:0] = 0

10000: 8KB; Baddrx[10:0] = 0

10001: 16KB; Baddrx[11:0] = 0

For example, if 20000100 is used as the base address of region0, then region0 can be set to a maximum of 256B. If you want to set

The region0 is set to 128B, and the REGION0 register should be filled with 0x0000400a. If 20040000 is used as the base address, the region

The maximum can be set to 64KB. If a 64KB region is to be defined, this register should be filled with 0x01000013.

28.4.1.3 Memory Access Rights

Priority of the four authority for mem:

request mem	Security super	Security user	Un-Security super	Un-Security user
Security super	√+	√+	√+	√ +
Security user	×	~	x	х
Un-Security super	x	х	~	√+
Un-Security user	Х	x	x	~

Note:
v+ all access, include read, write, data access, opcode fetch

- access based on the current attribute
- X no access

ÿ The bus access of security-super can access sram at will

ÿ un-security-super's bus access can be freely accessed is configured as un-security-user

the region

ÿ The bus access of security-user can only access the security-user according to the current AP and CD attributes

the region

ÿ The bus access of un-security-super can access un

security-super ÿ region

ÿ The bus access of un-security-user can only access un

security-user ÿ region

The APx and CDx registers are used to set the access attributes of each region corresponding to different permissions, where CDx registers

The register is only valid during the read operation during bus access, that is, to set whether to allow reading data and reading instructions. The APx registers are used to

Set whether to allow read/write operations.

For example, if CAR[1:0] is set to 00, and CR[0] is 1, it means that REGION 0 is un-security-user, and

And enable permission protection, if the bus access is security-super or un-security-super, you can

access to REGION 0; if the bus access is Security-user, any access will be denied; if the bus access

Q is un-security-user, AP0[1:0] is 01, indicating read-only, CD0[1:0] is 01, indicating data access, then

REGION 0 allows the bus to read data, and all other operations are denied.

If the AHB bus accesses an inaccessible area or the permissions are wrong, the sasc module will give read deny

or write deny signal, so as to return the wrong HRESP response signal, if the CPU initiates the bus access, then

A hardware exception will be generated, and if it is another device, it will only deny access.

28.4.2 Trusted Access to Peripherals

The TIPC module can only be written when the PROT[2] signal is 1, that is, only in the trusted world can the

Letter attribute configuration register. The Ip_trust_vld register is 0 by default, that is, all peripherals are untrusted. At this time, the peripherals

It can be accessed at will. If the ip_trust_vld corresponding to the peripheral is set, that is, the peripheral is set as a trusted device, only

Trusted world commands can access this peripheral.

29 Appendix 1. Definition of chip pins

29.1 Chip pin distribution

Figure 38 W800 chip pin distribution

29.2 Chip pin multiplexing relationship

Table 220 Chip pin multiplexing relationsh	ip
--	----

				Table 220 Chip pin multiplexing relationship			
number	name	type	Pin function after reset	multiplexing function	Highest frequen	cy pull-up and pull-down	capability drive capability
1	PB_20	I/O UART_	RX	UART0_RX/PWM1/UART1_CTS/I2C_SCL	10MHz UP/DO) WN	12mA
2	PB_19	I/O UART_	тх	UART0_TX/PWM0/UART1_RTS/I ² C_SDA	10MHz UP/DO) WN	12mA
3	WAKEUP		WAKEUP wake up function			DOWN	
4	RESET		RESET reset			UP	
5	XTAL_OUT	O External	crystal oscillator output	Y			
6	XTAL_IN	l External	crystal oscillator input	0			
7	AVDD33	P chip por	wer supply, 3.3V				
8	ON	I/O RF Ante	anna	O.Y			
9	AVDD33	P chip po	wer supply, 3.3V				
10	AVDD33	P chip por	wer supply, 3.3V				
11 AVI	DD33_AUX	P chip po	wer supply, 3.3V				
12	TEST	I Test fun	ction configuration pin				
13 BO	OTMODE	I/O BOOTM	IODE	IPS_MCLK/LSPI_CS/PWM2/IPS_DO	20MHz UP/DO	WN	12mA
14	PA_1	I/O JTAG_O	ск	JTAG_CK/I ² C_SCL/PWM3/I ² S_LRCK/ADC0	20MHz UP/DO	WN	12mA
15	PA_4	I/O JTAG_S	\$WO	JTAG_SWO/I²C_SDA/PWM4/I²S_BCK/ADC1	20MHz UP/DO	WN	12mA
16	PA_7	I/O GPIO, i	nput, high impedance	PWM4/LSPI_MOSI/I ² S_MCK/I ² S_DI /Touch0	20MHz UP/DO	WN	12mA

17	VDD33IO	Ρ	IO power supply, 3.3V				
18	PB_0	I/O GPIO, i	nput, high impedance	PWM0/LSPI_MISO/UART3_TX/PSRAM_CK/Touch3	80MHz UP/DC	WN	12mA
19	PB_1	I/O GPIO, i	nput, high impedance	PWM1/LSPI_CK/UART3_RX/PSRAM_CS/Touch4	80MHz UP/DC	WN	12mA
20	PB_2	I/O GPIO, i	nput, high impedance	PWM2/LSPI_CK/UART2_TX/PSRAM_D0/Touch5	80MHz UP/DC	WN	12mA
21	PB_3	I/O GPIO, i	nput, high impedance	PWM3/LSPI_MISO/UART2_RX/PSRAM_D1/Touch6 80MHz UP/DOWN		0	12mA
22	PB_4	I/O GPIO, i	nput, high impedance	LSPI_CS/UART2_RTS/UART4_TX/PSRAM_D2/Touch7 80MHz UP/DOWN			12mA
23	PB_5	I/O GPIO, i	nput, high impedance	LSPI_MOSI/UART2_CTS/UART4_RX/PSARM_D3/Tou	80MHz	UP/DOWN	12mA
24	VDD33IO	Ρ	IO power supply, 3.3V				
25	CAP	I Externa	capacitor, 1µF			-	
26	PB_6	I/O GPIO, i	nput, high impedance	UART1_TX/MMC_CLK/HSPI_CK/SDIO_CK/Touch9	50MHz UP/DC	WN	12mA
27	PB_7	I/O GPIO, i	nput, high impedance	UART1_RX/MMC_CMD/HSPI_INT/SDIO_CMD/Touch	50MHz	UP/DOWN	12mA
28	PB_8	I/O GPIO, i	nput, high impedance	IPS_BCK/MMC_D0/PWM_BREAK/SDIO_D0/ Touch11 50MHz UP/DOWN			12mA
29	PB_9	I/O GPIO, i	nput, high impedance	IPS_LRCK/MMC_D1/HSPI_CS/SDIO_D1/ Touch12	50MHz UP/DC	WN	12mA
30	PB_10	I/O GPIO, i	nput, high impedance	I2S_DI/MMC_D2/HSPI_DI/SDIO_D2	50MHz UP/DC	WN	12mA
31	VDD33IO	P	IO power supply, 3.3V				
32	PB_11	I/O GPIO, i	nput, high impedance	I ^z S_DO/MMC_D3/HSPI_DO/SDIO_D3	50MHz UP/DC) WN	12mA
33	GND	P ground					

statement

Beijing Lianshengde Microelectronics Co., Ltd. reserves the right to modify and update Lianshengde Microelectronics products or various documents and materials at any time. Place

Updates will be released through the official channel of Lianshengde Microelectronics. Users must ensure that they obtain correct information through official channels. Lian Sidley

Microelectronics does not promise to notify everyone of updated information.