Chip driver guidance document

Date	2021/4/14
Project ID	Ххх
Document	V3.1
Version Driver Version	V2.2
App Version	V1.25
Release	2021/4/14
Date Author	Steven

Revision History:

Version	Date	Author
V2.0	2020/8/13	Steven
V3.0	2021/4/13	Steven
V3.1	2021/4/14	Steven

Change of resume:

Version v2.0	First Edition	
	1. Compatible with the chip series, support CST1XX/CST2XX/CST3XX/CST7XX/CST8XX	
	/CST1XXSE/CST2XXSE/CST3XXSE	
	2. Support apk firmware upgrade, read version number, factory test, read raw and diff functions.	
	3. Support ESD detection function.	
	4. Support gesture wake-up function.	
	5. Support proximity sensing function.	
Version V3.0	1. Support CST9XX	
	2. Support factory test open and short circuit	
	3. Force DTS to match and get rst/int/resolution	
Version V3.1	1. Modify the firmware configuration content	

3

Contents1 Target	3
2. Applicable chip types	
3. File structure	4
4. Compile configuration	4
4.1 Modify the compilation file	
4.2 Compile command	
5. Driver function configuration	5
5.1 DTS configuration	
5 5.2 Functional module and project information configuration (mandatory)	6
5.3 Mass production test configuration (optional)	8
6. adb debugging node	
7. apk debugging	10
7.1 Data saving	10
7.2 Rawdata/Diff mutual compatibility interface introduction	10 7.3
Firmware update	10
8. Gesture wake-up function	11
8.1 Gesture initialization	11
8.2 Gesture reporting	12
9. Proximity sensing function	12
9.1 Proximity sensing initialization	12 9.2
Proximity sensing reporting	13
10. Driver loading process	14
10.1 10.2 Loading I2C Driver	14
10.3 Executing Probe Function	14 10.4
Reporting Touch Information	15 11.
Register Description	15 11.1
Registers of Mutual Capacitance Products CST1XX/CST3XX:	
Registers of Self-Capacitance Products CST8XX/CST7XX	17

1. Goal

This document is mainly used to introduce the framework architecture of the Haiyechuang touch chip driver, the configuration and debugging of the driver, to facilitate FAE colleagues and solution companies to debug the driver.

Includes the main functions of the driver, driver configuration, document structure, and migration steps.

2. Applicable chip types

Basic Information			
Supported chip types CST1XX: CST126 CST128 CST130 CST140 CST14055 CST148			
	CST1XXSE:CST128SE		

	CST2XX: CST226 CST237 CST240
	CST2XXSE: CST226SE
	CST3XX: CST326 CST328 CST340 CST348
	CST7XX: CST716 CST726 CST736
	CST8XX: CST816 CST826 CST836U
	CST9XX: CST912 CST918
	CST6XX: CST6928S
Supported platforms	Support Android platform (MTK/Qualcomm/Allwinner/Rockchip/Spreadtrum)
ADB, apk function support	
Other Features	GESTURE ESD PROXIMITY

3. File structure

The driver files are stored in the **hynitron** folder, which implements functions such as driver mounting, touch point reporting, sleep wake-up, gesture wake-up, FW upgrade, and **APK** and **ADB** debugging. The following list is a brief introduction to the functions of each file:

file name	Attribute functi	on
Makefile	Required Make	efile
Kconfig	Required Kcor	nfig file
xxx_core.c	The main function	file of the driver is required to realize the functions of driver mounting, reading and reporting of touch data, and sleep and wake-up.
xxx_core.h	The main functio	n header file of the required driver includes project information (each project needs to be configured separately), main structure
		Body type.
Hynitron_config.h	Mandatory En	able and Disable header files for configurable function modules
Hynitron_common.h	Required chip	type and register definition, other file function external declaration, print information definition
Hynitron_esd_check.c	Required ESD	detection function file
Hynitron_gesture.c	Optional gestu	re wake-up function file
Hynitron_i2c.c	Required IIC c	ommunication function file
Hynitron_proximity.c	Optional proxir	nity sensing function file
Hynitron_tool_debug.c can select Andro	oid sys and pro n	bdes for adb and apk debugging. It is strongly recommended to add this function.
Hynitron_update_firmware.cRequired	irmware update f	unction file
Hynitron_update_firmware.hRequired	irmware update I	neader file
/firmware	Required Firm	ware files used for firmware upgrade
/docs	Optional Dts c	onfiguration

4. Compile configuration

4.1 Modify the compiled file

Package the driver files into the hynitron folder and copy the hynitron folder to the kernel/dirvers/input/touchscreen directory.

(1) Modify the Kconfig file in the touchscreen directory and add the following line to the end of the file:

Source "drivers/input/touchscreen/hynitron/Kconfig"

(2) Modify the Makefile file in the touchscreen directory and add the following line to the end of the file:

Obj-\$(CONFIG_TOUCHSCREEN_HYNITRON_TS) +=hynitron/

or obj-y += hynitron/

4.2 Compile Commands

(1) Call up menuconfig and select TOUCHSCREEN_HYNITRON_TS

(2) Compile bootimage

\$ make bootimage -j32

The driver file is compiled by default and there is no need to modify the above options.

5. Driver function configuration

5.1 DTS Configuration

Example:

Example:

i2c@f9927000

{ hynitron@1a{

compatible = "hynitron,hyn_ts"; reg =

<0x1a>;

hynitron,reset-gpio = <&gpio 12 0x01>;

hynitron,irq-gpio = <&gpio 13 0x02>;

- hynitron,max-touch-number = <5>;
- hynitron,display-coords = <1080 1920>;

hynitron,have-key;

hynitron,key-number = <3>;

hynitron,key-code = <139 172 158>;

hynitron,key-y-coord = <2000 2000 2000>; hynitron,key-

x-coord = <200 600 800>;

};

};

 $\ensuremath{\text{DTS}}$ needs to contain the following

information: 1. IIC add	ress (reg defaults to 0x1A, which can be changed in special	
cases) 2. Property na	are (compatible must be consistent with the internal definition of the driver, oth	erwise

the driver cannot be loaded) 3. Interrupt pin

(hynitron, irq-gpio) 4. Reset pin (hynitron, reset-

gpio) 5. Maximum touch finger index (hynitron, max-touch-number) 6.

Resolution (hynitron, display-coords) 7. Key information

(if there is a key, it must be configured) Note: In addition

6

lodify the function hyn_parse_dt and assign values directly.

5.2 Functional modules and project information configuration (mandatory)

5.2.1 Configure Hynitron_core.h file (project information)

Project information configuration

Please select the corresponding IC type and project ID information (Hynitron_core.h):

#define HYN CHIP TYPE CONFIG	CST340
#define HYN IRQ TRIGGER RISING CONFIG	0x01
#define HYN MAIN IIC ADDR CONFIG	0x1A

The project configuration is as above. When starting a new project, please ask the driver engineer or FAE engineer to configure the following information:

CHIP_TYPE chip type: CST340 (required, if the chip type is incorrectly selected, it may cause the chip detection to fail, the firmware to fail to upgrade, and the driver to fail to load)

TRIGGER_RISING rising edge: 0x00 (optional, default falling edge triggers interrupt)

2 :	#define	HYN X DISPLAY DEFAULT	720
3:	#define	HYN Y DISPLAY DEFAULT	1280
1:	#define	HYN X REVERT	0
5:	#define	HYN Y REVERT	0
5:	#define	HYN XY EXCHANGE	0
1:	#define	HYN MAX KEYS	3
3:	#define	HYN MAX POINTS	5
: (#define	HYN MAX SELFCAP ID	2

X_DISPLAY: 720 (default, if dts acquisition fails, use this value)

Y_DISPLAY: 1280 (Default, if dts acquisition fails, use this value)

 $\textbf{X}_\textbf{REVERT: 0}$ (default, changes the coordinate direction in the X direction)

Y_REVERT: 0 (default, changes the coordinate direction in the Y direction)

XY_EXCHANGE: 0 (default, swap X and Y)

MAX_KEYS: 3 (default, 3)

MAX_POINTS: 5 (default, needs to be changed to 2)

Other macro configurations:

HYN_RESET_SOFTWARE	Enable software watchdog reset function	Disable
HYN_UPDATE_FIRMWARE_POEWRON_ENABLE enables power-off res	et upgrade function	Disable
HYN_UPDATE_FIRMWARE_ENABLE	Enable firmware upgrade function	Disable
HYN_UPDATE_FIRMWARE_FORCE	Enable the forced firmware upgrade function	Disable
HYN_IIC_TRANSFER_LIMIT	Enable IIC communication byte length limit function	Disable

5.2.2 Configure the hynitron_config.h file (driver function module configuration)

Configure the function module:

Function module macro (hynitron_config.h) function		default
HYN_DEBUG_EN	Print debug log information for debugging. It is recommended to turn it off in the user version .	Enable
HYN_MT_PROTOCOL_B_EN	Linux multi-touch protocol switch, enable (B protocol), disable (A protocol) Enable	
HYN_REPORT_PRESSURE_EN	Multi-Touch A/B reports pressure value, enabled by default	Enable
HYN_GESTURE_EN	Gesture function switch, enable (on), disable (off)	Disable
HYN_PSENSOR_EN	Proximity sensor switch, enable (on), disable (off)	Disable
THIS_ESDCHECK_EN	The ESD protection mechanism detects once every 1s and resets the IC if an abnormality occurs.	Enable
HYN_AUTO_FACTORY_TEST_EN starts the factory test v	erification function to detect tp consistency.	Disable
HYN_EN_AUTO_UPDATE	Automatic firmware upgrade function. Enable (on), disable (off)	Disable
HYN_SYS_AUTO_SEARCH_FIRMWARE firmware auton	atic query upgrade function. enable (on), disable (off)	Disable
ANDROID_TOOL_SURPORT	Android platform proc node generation. Used for apk debugging.	Enable
HYN_SYSFS_NODE_EN	Android platform sys node generation. Used for adb debugging.	Enable

Configure the chip type supported by the firmware upgrade function (corresponding to chip selection):

Upgrade function macro (hynitron_config.h)	Function	default
HYN_EN_AUTO_UPDATE_CST0xxSE	Enable the CST0XXSE series chip upgrade function.	Disable
	Including CST016SE/CST026SE/CST036SE	
HYN_EN_AUTO_UPDATE_CST0xx	Enable the CST0XX series chip upgrade function.	Disable
	Including CST016/CST02E/CST036	
HYN_EN_AUTO_UPDATE_CST1xx	Enable the CST1XX series chip upgrade function.	Disable
	Including CST126/CS130/CST140/CST14055/CST148	
HYN_EN_AUTO_UPDATE_CST1xxSE	Enable the CST1XXSE series chip upgrade function.	Disable
	Including CST128SE/CST18858SE/CST18868SE	
HYN_EN_AUTO_UPDATE_CST2xx	Enable the CST2XX series chip upgrade function.	Disable
	Including CST226/CST237/CST240	
HYN_EN_AUTO_UPDATE_CST2xxSE	Enable the CST2XXSE series chip upgrade function.	Disable
	Includes CST226SE	
HYN_EN_AUTO_UPDATE_CST3xx	Enable the CST3XX series chip upgrade function.	Disable
	Includes CST326/CST328/CST340/CST348	
HYN_EN_AUTO_UPDATE_CST3xxSE	Enable the CST3XXSE series chip upgrade function.	Disable
	Including CST328SE	
HYN_EN_AUTO_UPDATE_CST78xx	Enable the CST78XX series chip upgrade function.	Disable
	Including CST716/CST726/CST736/CST816/CST826/CST836U	
HYN_EN_AUTO_UPDATE_CST6xx	Enable the CST6XX series chip upgrade function.	
	Including CST6928S	

HYN_EN_AUTO_UPDATE_CST9xx Enable the CST9XX series chip upgrade function. Including CST912 CST918 Note: If you cannot enter bootloader mode during the upgrade , please confirmer the reset method: 1. Power off reset 2. Reset pin reset 3. Watchdog reset				
Including CST912 CST918 Note: If you cannot enter bootloader mode during the upgrade , please confirm the reset method: 1. Power off reset 2. Reset pin reset 3. Watchdog reset				
Including CS 1912 CS 1918 Note: If you cannot enter bootloader mode during the upgrade , please confirm the reset method: 1. Power off reset 2. Reset pin reset 3. Watchdog reset				
Note: If you cannot enter bootloader mode during the upgrade , please confirm the reset method: 1. Power off reset 2. Reset pin reset 3. Watchdog reset				
Note: If you cannot enter bootloader mode during the upgrade , please confirm the reset method: 1. Power off reset 2. Reset pin reset 3. Watchdog reset				
1. Power off reset 2. Reset pin reset 3. Watchdog reset				
1. Power off reset 2. Reset pin reset 3. Watchdog reset				
2. Reset pin reset 3. Watchdog reset				
3. Watchdog reset				
-				
The window period for entering bootloader mode is generally 5ms~20ms after resetting the chip, and commands sent within this period are valid.				
5.2.3 Firmware information configuration (must be modified)				
Configuration IC type:				
#define HYN_CHIP_TYPE_CONFIG configure CST340 ÿhynitron_core.hÿ				
firmware (hynitron update firmware.c):				
VVV2J.				
00026: #include "firmware/capacitive hynitron cst0xx update.h"				
00027: #include "firmware/capacitive_hynitron_cst2xx_update.h"				
00028: #include "firmware/capacitive hynitron_cst2xxse_update.h"				
00029: #include "firmware/capacitive hynitron cst3xx update.h"				
00030: #include "firmware/capacitive hynitron cst3xxse update.h"				
00031: #include "firmware/capacitive hynitron cst6xx update.h"				
00032: #include "firmware/capacitive hynitron cst8xx update.h"				
00033: #include "firmware/capacitive hynitron_cst9xx_update.h"				
00034:				
00035: //please config the chip series before using.				
00036: struct hynitron fw array hynitron fw grp[] = {				
00037: //0-name: 1-fw: 2-project id: 3-module id: 4-chip type: 5-fw length:				
00038: { "capacitive hynitron cst0xx update", cst0xx fw, 0x2843.0x01, CST016, (sizeof(cst0	xx fw))}.			
("capacitive hypitron cst2xx update", cst2xx fw, 0x0501,0x01, CST226, (sizeof(cst2xx fw)))				
00040: { "capacitive hynitron cst2xxse update", cst2xxse fw, 0x0501,0x01, CST226SE, (sizeof(cs	t2xxse fw)			
00041: { "capacitive hynitron cst3xx update", cst3xx fw, 0x2117,0x11, CST348, (sizeof(cst3	xx fw))).			
00042: { "capacitive hynitron cst6xx update", cst6xx fw, 0x2117.0x11, CST69288, (sizeof(cs	t6xx fw)))			
00043: { "capacitive hypitron cst3xxse update", cst3xxse fw. 0x0501,0x01, CST3288E, (sizeof(cs	t3xxse fw)			
00044: { "capacitive hynitron cst8xx update", cst8xx fw, 0x0501,0x01, CsT836, (sizeof(cst	xx fw)]]			
0045: { "capacitive hypitron cst9xx undate", cst9xx fw. 0x208,0x11 CST918, (sized)(cst0	xx fw))]			
00046:				
00047: 3:				

The following contents need to be modified according to the firmware:

(1) Replace the .h file of the corresponding

chip (2) Modify the hynitron_fw_grp[] corresponding firmware, project ID, module ID, chip type. (3) If a project has

multiple TP factories, you can add the corresponding header file and identify it according to the project ID and module ID .

5.3 Mass production test configuration (optional)

The configuration of mass production test parameters needs to be used with the

Hyntronic test apk . Open the macro: ANDROID_TOOL_SURPORT (hynitron_config.h)

Generate proc nodes: /proc/cst1xx_ts/cst1x-update (mutual capacity) /proc/

cst8xx_ts/cst8xx-update (self-capacity) Hyntronic test APK:

Hyntronic_TP_Tools(1.25).apk (the version cannot be lower than 1.25)

5.3.1ÿInstall test apk

5.3.2, Modify selinux permissions

adb shell setenforce 0
If you need to use the user version, please modify the upper te file and set the test apk to the system apk.
Here is an example:
1. Add in file_context: /proc/cst1xx_ts/cst1xx-update u:object_r:cst1xx_ts:s0 2. Add in File.te : type
cst1xx-update ,fs_type,proc_type; 3. Add in untrusted_app_25.te

allow untrusted_app_25 cst1xx-update :file { read write getattr ioctl open};

For details, please consult Android upper-level apk colleagues.

5.3.3ÿConfigure apk factory test parameters

Factory test data save path: /sdcard/Android/data/com.hyn.tp_updatefw/cache/cstxxx/ Configuration file

name: hyn_mutualcap_testconfig.ini Configuration file

path: /system/etc/hyn_mutualcap_testconfig.ini

Adb root

Adb remount

Adb push /..hyn_mutualcap_testconfig.ini /system/etc/

Start APK Factory automatic testing:

Adb shell am start -n com.hyn.tp_updatefw/.FactoryActivity

6. adb debugging node

Step 1: Modify selinux permissions: adb shell setenforce 0

There are two adb debugging nodes generated :

1. /proc/cst1xx_ts/cst1xx-update (open the macro ANDROID_TOOL_SURPORT)

f01:/sys/hynitron_debug # ls hynfwupdate hynfwupgradeapp hyntpfwver hyntprwreg

Check the version number: cat hyntpfwver

de:0x1 Firmware Upgrade Echo "1" >hynfwupdate //Automatically upgrade the firmware integrated Echo "HYN_CST1_1.bin" >hynfwipgradeapp into the driver. //Automatically upgrade /mnt/HYN_CST1_1.bin, and ensure that the path of HYN_CST1_1.bin is /mnt. Interrupt enable : Echo "88" >hyntprwreg

Interrupt disable: Echo "99" >hyntprwreg

Reset chip: Echo "77" >hyntprwreg

2. /sys/hynitron_debug (open the macro HYN_SYSFS_NODE_EN)

7. apk debugging

Step 1: Modify selinux permissions: adb shell setenforce 0 Step 2:

Install the test apk: adb install C:\Users\steven_wu\Desktop\Hyntronic_TP_Tools(1.25).apk (the version cannot be lower than 1.25)

- 1. DrawLine
- 2. Draw a line
- 3. MultiTouch
- 4. Multi-finger touch
- 5. Update Firmware
- 6. Firmware Update
- 7. Data Analysis
- 8. Data analysis, including rawdata diff, mutual capacitance and self-capacitance signals
- 9. Manual Test

10. Manual test, mutual capacitance will obtain factory data Delta High Short

11. Self-Test

12. Automatic testing, as the name implies, automatically obtains factory data and then makes judgments based on data analysis. This item depends on the test configuration file.

13. About

14. Software Introduction

- 15. Exit
- 16. Exit

7.1 Data Retention

Diff and rawdata are not saved by default. When Savedata is checked on the DataAnalysis interface, the data will be automatically saved to

/sdcard/Android/data/com.hyn.tp_updatefw/cache/cstxxx/ and save in .csv format.

Factory data is saved by default, the directory is the same as above.

7.2 Introduction to Rawdata/Diff Mutual Compatibility Interface

When Apk automatically identifies a mutual-capacitance chip, several semi-transparent radio buttons and check boxes will appear in the upper left corner of the DataAnalysis interface. The functions are as follows:

Radio button:

Raw: Read Rawdata data

Diff: Read Diff data

Checkbox:

Reversal: Swap the data left and right. Because the relative positions of TX and RX of the tablet and the phone are different, and for debugging purposes, you can select the option to adjust the data display position (yes

The current position is still symmetrical)

Savedata: Save data

SelfCapData: If checked, the self-capacitance signals of Rx and Tx will be displayed on the right and bottom .

7.3 Updating the firmware

ÿ Before entering Update Firmare , please push the firmware to the /sdcard/ directory via adb . The reference command is as follows:

adb push **.bin /sdcard/ ÿThen select the firmware through the "OPEN FILE" button ÿClick "UPDATE" to update. After the progress bar ends, the interface will automatically refresh the number of tx and rx and the firmware version. Start command: am start -n com.hyn.tp_updatefw/.MainActivity am start -n com.hyn.tp_updatefw/.DrawLineActivity am start -n com.hyn.tp_updatefw/.UpdateFwActivity am start -n com.hyn.tp_updatefw/.DataAnalyzeActivity am start -n com.hyn.tp_updatefw/.ManualTestActivity am start -n com.hyn.tp_updatefw/.FactoryActivity Schedule: Commonly used adb commands adb shell cat /proc/kmsg | grep "HYN" adb shell cat /proc/kmsg > /mnt/sdcard/log adb pull /mnt/sdcard/log C:\Users\Administrator\Desktop adb logcat > C:\Users\twl\Desktop\log\logcat.log 1 Adb shell settings put system show_touches Open the line drawing interface adb shell settings put system pointer_location 1 Open pointer position Open Lavout adb shell setprop debug.layout true adb shell II /sys/bus/i2c/drivers View device mounts adb shell getevent adb shell getevent -I Reporting event adb shell getevent -r Reporting rate adb shell getevent -r /dev/input/event5 Back key adb shell input keyevent 3 Home button adb shell input keyevent 4 adb shell input keyevent 26 power button adb shell setenforce 0 Turn off selinux adb push C:\Users\steven_wu\Desktop\apk\hyn_mutualcap_testconfig.ini /system/etc/ ÿÿ push configuration file Adb shell input tap x y slide Adb shell Input swipe x1 y1 x2 y2 adb shell settings put system screen_off_timeout 600000 Set the LCD screen off time adb shell am start com.android.settings/com.android.settings.Settings //Open phone settings

8. Gesture wake-up function

8.1 Gesture Initialization

Supported gesture events:	
#define KEY_GESTURE_U	KEY_U
#define KEY_GESTURE_UP	KEY_UP
#define KEY_GESTURE_DOWN	KEY_DOWN

#define KEY_GESTURE_LEFT	KEY_LEFT
#define KEY_GESTURE_RIGHT	KEY_RIGHT
#define KEY_GESTURE_O	KEY_O
#define KEY_GESTURE_E	KEY_E
#define KEY_GESTURE_M	KEY_M
#define KEY_GESTURE_W	KEY_W
#define KEY_GESTURE_S	KEY_S
#define KEY_GESTURE_V	KEY_V
#define KEY_GESTURE_C	KEY_C
#define KEY_GESTURE_Z	KEY_Z
#define KEY_GESTURE_DOUBLECLICK Gesture code	KEY_POWER

reported by gesture:

Node that generates gesture information:

/sys/hynitron_debug/hyn_gesture_mode //Gesture mode status node

/sys/hynitron_debug/hyn_gesture_buf //Gesture reporting data node

8.2 Gesture reporting

Gestu	re data structure:	
struc	t hyn_gesture_st	
{		
	u8 header[HYN_GESTRUE_POIN	ITS_HEADER];
	u16 coordinate_x[HYN_GESTRU	E_POINTS];
	u16 coordinate_y[HYN_MANAGE	EMENT_POINTS];
	u16 report_key;	//The event code ID reported by the driver
	u8 gestrue_id;	//Gesture code ID reported by the chip
	u8 mode;	// Gesture wake-up function switch
	u8 active;	// Gesture detection is on, set when the screen is off
};		
Gestu	re function flow:	
Step ⁻	1: Register gesture wake-up supporte	ed events in hyn_probe and register gesture nodes.
Step 2	: When the screen is off, send a gesture	e detection command. Set the interrupt: low level trigger, no sleep. (The low level should be maintained for 200ms)

Step 3: Interrupt trigger, read the gesture code, report the input layer event code corresponding to the gesture code, and wake up the screen.

9. Proximity sensing function

9.1 Proximity Sensing Initialization

The implementation of the proximity sensing function mainly depends on the matching of the driver and the upper layer of Android to realize the opening and closing of the proximity sensing function, as well as the transmission of approaching and distant data.

In the hyn_proximity_init function:

(1) Initialize the input device that implements proximity sensing and set the support event $\ensuremath{\text{EV}}\xspace_{\ensuremath{\text{ABS}}\xspace}$

hyn_proximity_data->ps_input_dev = input_allocate_device();

__set_bit(EV_ABS, hyn_proximity_data->ps_input_dev->evbit);

input_set_abs_params(hyn_proximity_data->ps_input_dev, ABS_DISTANCE, 0, 1, 0, 0);

ret= input_register_device(hyn_proximity_data->ps_input_dev);

(2) Register proximity sensing nodes:

/sys/hynitron_debug/hyn_proximity_mode //Proximity sensing mode status

node /sys/hynitron_debug/hyn_proximity_buf //Proximity sensing reporting data node

hyn_create_proximity_sysfs(hyn_ts_data->client);

Node operation:

cat hyn_proximity_mode //View node information and proximity sensing status echo 01 >

hyn_proximity_mode //Write node information and turn on proximity sensing for simulation debugging

(3) Initialize the interface function for proximity sensing reporting

Transplant the corresponding proximity sensing reporting implementation method according to the platform. For details, see the reference driver.

9.2 Proximity Sensing Report

Currently,	the reporting method of proximit	y sensing varies depending on the platform. The mainstream reporting methods are as	follows:
(1) Spread	Itrum Platform		
The first m	ethod: Register character miscella	neous devices:	
err = n	nisc_register(&tp_ps_devi	ce); //The structure tp_ps_device defines the operation interface function.	
static i	int tp_ps_release(struct in	ode *inode, struct file *file);	
static	long tp_ps_ioctl(struct file	*file, unsigned int cmd, unsigned long arg)	
static	struct file_operations tp_p	s_fops = {	
.0	owner	= THIS_MODULE,	
	open	= tp_ps_open,	
.r	release = tp_p	s_release,	
.เ	unlocked_ioctl = tp_ps_ioc	ti,	
};			
static	struct miscdevice tp_ps_d	evice = {	
.r	minor = MISC_DYNAMIC_N	linor,	
.r	name = TP_PS_DEVICE,	//Usually the device name is ltr_558als	
.f	ops = &tp_ps_fops,		
};			
In the above	e implementation method, the upp	er layer will access the device: ltr_558als, and perform read and write operations through the	e ioctl operation interface function to detect approach and distance.
The secor	nd method: register class no	de:	
firmware	e_class = class_create(THI	S_MODULE,"sprd-tpd");//client->name	
firmware	e_cmd_dev = device_create	(firmware_class, NULL, 0, NULL, "device");//device	
if(device	e_create_file(firmware_cmc	I_dev, &dev_attr_proximity) < 0)	///sys/class/sprd-tpd/device/proximity
input_dev	<pre>/ = input_allocate_device()</pre>	;	
static DE	VICE_ATTR(proximity, S_I	RUGO S_IWUSR, show_proximity_sensor, store_proximity_sensor);	jister class device and
generate r	node: / sys/class/sprd-tpd/d	evice/proximity Register input device and report	
approach	and distance events:		
input_rep	oort_abs(tp_ps->input, ABS	S_DISTANCE, dps_data);	
input_sy	vnc(tp_ps->input);		
The	upper layer accesses the sys	node proximity to issue proximity sensing on and off	

commands. This method separates write data from read data, that is, write data is issued through the node proximity, and read data is read through the input device.

(2) Mtk platform

14

```
The first method:
       define the structure: struct hwmsen_object obj_ps;
      obj ps.polling = 0;//interrupt mode
       obj_ps.sensor_operate = tpd_ps_operate;
      ÿÿ ID_PROXIMITYÿ if((err = hwmsen_attach(ID_PROXIMITY, &obj_ps)))
      static int tpd_ps_operate(void* self, uint32_t command, void* buff_in, int size_in,void* buff_out, int size_out, int* actualout)
      This method relies on the hwmsen design of the MTK platform and implements reading and writing data through the operation interface function: tpd_ps_operate.
       The header files that need to be included are:
      #include <hwmsensor.h>
      #include <hwmsen_dev.h>
      #include <sensors io.h>
      Second method:
      Register the light sensor driver: alsps_driver_add(&ps_init_info);
      struct alsps_init_info ps_init_info = {
             .name = "hyn_ts",
             .init = ps local init,
             .uninit = ps_local_uninit,
      };
      Define the interface function
      struct ps_control_path ps_ctl = { 0 };
      struct ps data path ps data = \{0\}:
             ps_ctl.open_report_data = ps_open_report_data; //Report dataps_ctl.enable_nodata =
             ps_enable_nodata; //Send command dataps_data.get_data = ps_get_data; //Read
             data
      This method refers to the light sensor driver loading process to define the corresponding operation function, thereby realizing the interaction between the upper layer and the driver. However, this method cannot achieve
compatibility, and the registration function must be placed at the driver entrance, not in the probe
       Header files that need to be included:
             #include <alsps.h>
10. Driver loading process
           10.1 Driver Entry Function
             static int __init hynitron_driver_init(void) 10.2 Loading
          I2C driver
               ret = i2c_add_driver(&hynitron_i2c_driver); //Note to check the dts configuration compatible, it must be the same as the hyn_dt_match area
           10.3 Execute the probe function
               1. hyn_platform_data_init(ts_data); //Initialize platform-related data and parse dts configuration
               2ÿhyn_gpio_configure();
                                                                         gpio_request to apply for IRT and RST pins
                                                                    // Initialize hyn_ts_data structure data, including project ID, chip type, etc.
               3ÿhyn_ts_data_init(client);
              4. hyn_detect_bootloader(client); //Detect whether the chip boot mode can be entered and confirm the chip type. 5.
              hyn_input_dev_int(ts_data); //Initialize the input device input, set the reporting point A/B protocol, and create a reporting point work queue.
                                                                    //Initialize interrupt registration, including rising edge and interrupt
               service routine. 6.
```

hyn_irq_init(client); 7. hyn_update_firmware_init(client); //To upgrade the firmware, you must configure the correct chip type and project ID before you can upgrade.

8ÿhynitron_proc_fs_init(); // Generate proc/node information for apk debugging. 9. hyn_create_sysfs(client); 10. // Generate sys/hynitron_debug node for debugging . hyn_gesture_init(hyn_ts_data->input_dev, client); // Initialize the gesture wake-up function and generate gesture nodes. 11ÿthis_proximity_init(); // Initialize the proximity sensing function and generate a proximity sensing node. 12. hyn_init_esd_protect(); 10.4 // ESD protection function initialization, time period 1s. Touch information reporting . 1. The touch chip pulls an interrupt pulse. . 2. Trigger the driver's interrupt service routine. . 3. Add the report work to the corresponding work queue. . 4. Report touch data to the input layer. . 5. The Android layer processes and displays the coordinates. .

11. Register Description

11.1 Mutual Compatibility Product Register:

Touch information register (ENUM_MODE_NORMAL mode)

(1) The tou	(1) The touch information must be in normal mode, otherwise the data is abnormal (write 0xD109 to enter).										
(2) Data rea	(2) Data reading must read the 7 bytes of the first finger according to 0xD000 , including the number of fingers and the number of keys.										
(3) Send th	(3) Send the read data to complete the synchronization data (write 0xD000AB).										
Here is an exam	ple:										
0x1A	IN	0xD0	0x00								
0x1A	R	0x06	0x33	0x56		0x68		0x8F	0x01	0xAB	
0x1A	IN	0xD0	0x00	0xAB							
(4) To read	the subsequen	t multi-finger dat	ta, allocate 5 by	tes to each finge	er and re	ad accor	rding to t	he address.			
For details,	please refer to	the reporting fu	nction cst3xx_te	ouch_report .							
register	High four				Lower four bits	S					
address	bit7	bit6	bit5	bit4	bit3 bit2	oit1 bit0					
0xD000 1st fing	00 1st finger ID 1st finger status: pressed (0x06) or lifted										
0xD001 The high ei	e high eight bits of the X coordinate value of the 1st finger : X_Position>>4										
0xD002 The high ei	ght bits of the Y coordir	nate value of the 1st fing	ger:	Y_Positio	n>>4						
0xD003 1st fing	er's X coordinate v	alue X_Position&0)x0F		1st finger	's Y coordi	nate value	Y_Position&0x	0F		
0xD004 1st fing	04 1st finger pressure value										
0xD005 Report	ort key flag (0x80) Report the number of fingers										
0xD006 Fixed 0	(D006 Fixed OcAB										
0xD007 2nd fine	jer ID				2nd finge	er status:	pressed (0x06) or lifted			
0xD008 The high e	h eght bits of the X coordinate value of the 2nd finger : X_Position>>4										

0xD009 The high e	ght bits of the Y coordinate value of the 2nd finger : Y_Position>>4			
0xD00A 2nd fin	er's X coordinate value X_Position&0x0F	2nd finger's Y coordinate value Y_Position&0x0F		
0xD00B 2nd fin	er pressure value			
0xD00C 3rd fing	er ID	3rd finger status: pressed (0x06) or lifted		
0xD00D The high e	ght bits of the X coordinate value of the 3rd finger : X_Position)n>>4		
0xD00E The high e	ght bits of the Y coordinate value of the 3rd finger : Y_Positic	n>>4		
0xD00F 3rd fing	er's X coordinate value X_Position&0x0F	3rd finger's Y coordinate value Y_Position&0x0F		
0xD010 3rd fing	er pressure value			
0xD011 4th fing	er ID	4th finger status: pressed (0x06) or lifted		
0xD012 The high e	ght bits of the X coordinate value of the 4th finger : X_Position>>4			
0xD013 The high e	aght bits of the Y coordinate value of the 4th finger : Y_Position>>4			
0xD014 4th fing	er's X coordinate value X_Position&0x0F	4th finger's Y coordinate value Y_Position&0x0F		
0xD015 4th fing	er pressure value			
0xD016 5th fing	er ID	5th finger status: pressed (0x06) or lifted		
0xD017 The high e	ght bits of the X coordinate value of the 5th finger : X_Positio	אראיים אראיים אראיים		
0xD018 The high e	ght bits of the Y coordinate value of the 5th finger : Y_Positio	n>>4		
0xD019 5th fing	er's X coordinate value X_Position&0x0F	The Y coordinate value of the 5th finger is Y_ Position&0x0F		
0xD01A 5th fing	er pressure value			

Version information register (ENUM_MODE_DEBUG_INFO mode)

(1) Version information must be read in **debug info mode (write 0xD101)**

(2) Read the information of the corresponding register address

(3) Return to normal mode (write 0xD109)

For details, please refer to the reporting function cst3xx_firmware_info .

Register Address	Register Description	Register (4 bytes)			
0xD1F4	Number of buttons, TX, and RX channels	KEY_NUM TP_NRX NO		NC	TP_NTX
0xD1F8	X/Y resolution	TP_LOSS		TP_RESX	
0xD1FC	Firmware verification code, Bootloader time	0xCACA BC		BOOT_TIMER	
0xD204	Chip type, firmware project ID	IC_TYPE PROJECT_ID		PROJECT_ID	
0xD208	Chip firmware version number	FW_MAJOR FW_MINOR F		FW_BUILD	
0xD20C Chip firmware checksum		checksum_H	checksum_H	checksum_L	checksum_L

Mode Command Register

The mode command is used to enter different working modes, usually for internal debugging. The client usually uses the normal mode 0xD109.

16

Order	Command Description	Format
0xD101	ENUM_MODE_DEBUG_INFO mode, enter the mode of reading firmware information.	Write 0xD1 0x01
0xD102	System_Reset flag, reset the chip.	Write 0xD1 0x02
0xD104	Redo_Calibration flag, reinitializes the algorithm.	Write 0xD1 0x04
0xD105	Deep sleep, enter sleep mode.	Write 0xD1 0x05
0xD108	ENUM_MODE_DEBUG_POINTS, enter debug point reporting mode.	Write 0xD1 0x08
0xD109	ENUM_MODE_NORMAL, enter the normal reporting mode, which is the default mode.	Write 0xD1 0x09
0xD10A	ENUM_MODE_DEBUG_RAWDATA, enter the mode of reading rawdata .	Write 0xD1 0x0A
0xD10B	ENUM_MODE_DEBUG_WRITE, enter debug write mode.	Write 0xD1 0x0B
0xD10C	ENUM_MODE_DEBUG_CALIBRATION, enter redo debugging mode.	Write 0xD1 0x0C
0xD10D	ENUM_MODE_DEBUG_DIFF	Write 0xD1 0x0D
0xD119	ENUM_MODE_FACTORY	Write 0xD1 0x19

11.2 Self-contained product CST8XX/CST7XX register

The working mode switching command is as follows

Working Mode	Switch Command	describe
NORMAL	0000 Normal re	porting and gesture reporting
DBG_IDAC	0004 Factory te	st data acquisition
DBG_POS	00E0 Factory te	st buttons and coordinate acquisition
DBG_RAW	0006 Original v	alue acquisition
DBG_SIG	0007	differ value acquisition

NOMAL Register Description

Address	Name	bit7 b	t6 bit5	pit4 bit3	bit2 bi	:1 bit0				illustrate	Access
										Write:	
00h Work			00: NORMAL								
	_mode		04: DBG_IDAC							BW	
										E0: DBG_POS	NW
										06: DBG_RAW	
										07: DBG_SIG	

17

01h Proxi	mity ID				[7:	:0]				defaultÿ00 far awayÿC0 nearÿE0	R
02h touch	num					tou	ch poir	its[3:0]			R
03h touch	1_XH	event	_fig				positior	n[11:8]			R
04h touch	1_XL	X_position[7:0]									R
05h touch	1_ҮН	touch_ID[3:0] Y_position[11:8]									R
06h touch	1_YL	Y_position[7:0]									R
07h										defaultÿ00	R
08h										defaultÿ00	R
9h touch	2 хн	event	flg				positior	n[11:8]			R
10h touch	- 2 <u>X</u> L			 X_	positio	I		-			R
11h touch	2 YH	touch ID[3:0] Y position[11:8]									R
12h touch	- 12 YL	Y position[7:0]									R
13h										defaultÿ00	R
14h							┝──			defaultÿ00	R
						┢──	┢──				
										write	
A5h sleep				de	epslee	p[7:0]				03 Enter deepsleep	IN
A6h fw_v	ersion			fw	versio	n[7:0]					R
A7h fw_v	rsion			fw_	versior	า[15:8]				Firmware version number	R
A8h modu	ile_ID			modu	le_vers	sion[7:0	1			Module ID	R
A9h proje	ct_name			proj	ect_nar	ne[7:0]				defaultÿ00	R
AAh chip	type			cl	hip_typ	e[7:0]					R
ABh chip	type			ch	ip_type	»[15:8]				Chip Model	R
ACh chec	ksum			cl	hecksur	m[7:0]					R
ADh chec	ksum			ch	ecksum	n[15:8]				Firmware checksum	R
										write	
B0h Prox	state	Prox_state[7:0]								01H Enter Proximity mode	IN
			<u> </u>	<u> </u>		<u> </u>	—			00H Exit Proximity mode	
		ges_state[7:0]								write 01H Enter gesture recognition	
D0h ges_	state									model	IN
										00H exit gesture mode	

D3h gest	ure ID			gesture	[7:0]			Gesture mode is enabled to be effective double click:0x24 up:0x22 down:0x23 left:0x20 rain:0x21 C:0x34 e:0x33 m:0x32 O:0x30 S:0x46 V:0x54 ln:0x31 From:0x65	R
D4h	gesture data							Reserved for compatibility with other drivers	R
D5h									R
D6h									R
D7h									R
D8h									R
D9h									R
Yes									R