Machine Translated by Google

W Winner Micro

IV ERBTERAR T

WM_W800_Bluetooth system architecture and API description

V1.1

Beijing Lianshengde Microelectronics Co., Ltd. (winner micro)
Address: Room 1802, Yindu Building, No. 67, Fucheng Road, Haidian District, Beijing

Tel: +86-10-62161900

Company website: www.winnermicro.com

Machine Translated by Google

Document modification record

Version reyision time revision history author review
V1.0 2021/3/4 [C] Credte document Pengxg
V11 2021/05/17 1. Delete traditional Bluetooth related content Pengxg

2y AT commands set broadcast content and scan
response content.
3y AT command to set broadcast parameters
Table of contents
Documentation MOGIfICAtION HISIOTYciviiiiiiiieiiiee s ieis ettt eese e es e e ae e s e s s e en et e e s e e e e e n e ene e oo 2
LIS L) L= 0 oo g L=l OSSOSO
1 TNETOTUCTION. ...ttt bbb Sheb bbb bbb seanaenas 6

11 PUMPOSE Of WM. ...ttt ettt oeseteteeseae s e st e e ee e b e s e e s e e e eeeaee Seesesesesseseseeeaesesee s eneseseseeeaceees 6

12 INEENAEA REAUET ...t ettt Sassse s

13 DEFINIIION OF TEIMIS. ... essssee e e e 6

14 REFEIBINCES. ... e 2osen st

2 WB00 BIUETOON SYSLEIM........vviiiiiiiiieieieieiiies creitieeteet ettt a e ee et es eeseseanes et ese e ese e e s e te e r e e esenas 7

Machine Translated by Google

W Winner Micro

IV BB TERAET

21 Chip bluetooth design BIOCK GIAGIAM...........oiiiiii e et sbe e bt e e e e bt sbe e b e 7
2.2 WB800 Bluetooth system BIOCK GIAGIAM..........uiuiiiiiiiii i ettt ee shee bt esbe st e abeennesreesbeanee s 7
2.3 INtroduction t0 NIMBLE.........cciiiiiiiiiii s ettt sttt —esbe e bt e e e bt e nr e e nre e reaene e 8
231 NIMIDIE. ..ttt 8
2.3.2 NIMBLE dir€Ctory StrUCIUIE........ccuiiiiiiiiiiitii s et beaeaese st 8
2.4 Application Layer ProtoCOl DESCHIPLION.iuiitiitiiieitieiiitis ettt ettt ettt et abe e £asneabe e bt aneaeesneane e ene 9
241 [A T PRSP U PR PPRTO 9
o I V2 LT TSP U PP UPP PP PPRTPPN 9
R I € N L LR PPPPRPPPPI 10
2.5 Framework description Of SAMPIE COUE.........uiiiiiiiii e ettt et eees £eeabeeabeeabeesbeeesbeenneeens 13
251 Bluetooth System Software Code LOCALONcccviviririiieiiierereteteteesisies otesesesssesesesesesesessssssssssesssasessseseses irens 13

3 API description...
3.1 BIUBLOOT SYSIEM APttt ettt bbbt £ eabe et et et 13

3.2 CONLIONEI-SIAE APt bttt ettt b e e s b e e s bt e s bt e e bt e e Heeesbeeannreanbessneensseanneeas 14

331 GAP.....oiecciercrcrererreerreerreereeesseresnenessrnessreeee s N o s W S e enee e T e e e nnne 15
BLBL2 BLE SEIVET ...ttt ettt e e e e 16
BLBLB BLE ClIBNL. ittt bbb bbbt 18

3.4 Bluetooth assisted WiFi distriDUtion NEIWOTK APL..........oiiiii it ce ettt be e nbe besseenbeenenneas 19

3.4.1 Example of application process
3.4.2 Definition of auxiliary WiFi diStribution NEIWOIK SEIVICE..............ccoiiiiiiiiiiies e 20
3.5 Users realize their own distribution NEtWOrK SEIVICE...... ..ot e e twenty one
A AP] USBJE EXAIMPIES. ...ttt ittt et ateeite ettt e b e te e bt es btk e bt e s ekt e bt eheeab e e Heekeenbees bt eb e e bt e bt b e e b et eene e twenty one
4.1 Bluetooth SysStem €Nable (EXIL)..........cviiiiiiiiiiieiiis et e ere s twenty one
4.2 Start up and run (exit) the demMO SEIVET............ccciiiiiiiiiiii s e ceneaees twenty one
4.3 Start up and run (exit) demO CHENL...........ooiiiiii i e cenineeas twenty two
4.4 Run the multi-connection (exit) demo Client at DOOL...........ccoviiiiiiiiiiiiies s twenty two

4.5 Data exchange function twenty two

4.6 MUItI-CONNECHION FUNCLION. ...ttt ettt ee seeer e e e e sb e e sn e e e sreesneeseenreen twenty three
4.7 UART transparent tranSmiSSION fUNCHON.oiuiiiiiiiiiiiiiies ceeeitiet ettt b et nbe ee ke e bt ase e bt e bt asnenbeene e twenty four
4.8 TUMN ON thE TAMIO.eeiieiiie et ettt nre et sbe e r e e e e sbeesreeneenreenre e twenty four
48.1 Default broadcast data CONfIGUIALION.ccocveuieieuirieieiies ceeeieteeetee ettt oerenanes 26
4.8.2 User-defined broadcast data SEINGS.cc i wereriieserrese e eieiessnes s 27
4.9 TUM ON thE SCAN......cuiiiiiii s e ae b e e bbb 27

4.10 Open broadcasting/scanning in CONNECLEA STALE.cueiiiiiiiiiieiiis ettt ene eenneanns 29

4.10.1 In the connection state of Slave mode

Machine Translated by Google

W Winner Micro

IV BB TERAET

4.10.2 Connection state in Master MOde...........ccociiiiiiiiiiiiiies i .30
5 BIUELOOth AT COMMEANT.....c.eiiiiiiiiiiiii ittt ettt es bt sbeeb et e bbb et e b e b b sbeen e s a e 30
5.1 Brief description of BIUEtOOth AT COMMEANTS.ciiiiiiiiiieiiees e e are e resse e s e rese e e neeeees 30
5.2 Bluetooth SYStem AT COMMEANG........cc.uiiiuiiiiiiiiiieiiies eeetieatee et et et e e et e e s sbeeshaeesseean £eebeeaabeeesbeeesaneesnneeaseens 31
5.3 Bluetooth controller protocol stack AT COMMEANG.........ccouiiiiiiiiiiiiiieie et eenreanes 32

5.4 Bluetooth application layer AT command
5.4.1 Device Management AT COMMEANT.uueuiiuiiuieieaiesteeieasiesieasbeaes eeteaseeabeabeaseeabe e beaseesbeebeaseeabeenbes £esbeesseaneeabeans 36
5.4.2 BLE assisted WiFi distribution network AT COMMANG............ccoiieiiiiiiiiiiiiiis i s 41
5.4.3 StALUS COAE DEFIMILIONS.eeieieeieieeieeieieieeetetrieieteteas ctreeaereseeteeeeseeeesesese st easaesseeeeesetess Seesesesestasasasssasesessansesenn 41
6 Example of Bluetooth AT COMMANT OPEIALION.uiiiuiiiiiieeiieeiiieet cereie ettt e e ste e e st et e bt e sbeearbeeesbeeeas £eesbeeanbeeasbeesneesnneannneens 43
6.1 Bluetooth system enabling @nd @XItING..........coouiiiiiiiiiii e et et e abe e a ettt naeenne s 43
6.1.1 ENable the BIUBTOOtN SYSEIM.........cuiiiiiicieiciiieiiit e rieies ettt ettt b bbbttt e Sateeeb bbbt es et e st ee s eees 43

6.1.2 EXit the BIUETOOtN SYSLEIM........viiiieieteieicieiiiies ceirieteteseset ettt ssnenes esessssssesesasans 43

6.2 Turn on/off the Bluetooth demo broadcast....

6.2.1 ENAbIe the BIUETOOTN SYSIEIM..........cvcviuiiiviietieieteteetetcieteaes caetateeeetes e st ste e e s ese et essssetess et esessesess 2evessssesessesesesesssseseesasens 44
6.2.2 Open connectable broadCast EXAMPIE............c.cieiviueriiiieiiies ceeviessesee et ee st sttt be e ssesees seeseaeas 44
6.2.3 Stop DroadCasting EXAMPIE..........c.eveveiereeiiiieiis rreeetsseseeesererese e sss e s et esebesesesesens ssssssssssesesesas 44
6.2.4 EXit the BIUEtOON SYSIEM.......cuiuiiiieiiiiciiieiiietes ettt ettt ettt sveseseesesesesas 44

6.3 Turn on and off the BIUEtOOth BEMO SCAN..........ccciiiiiiiii i e sttt 44
6.3.1 ENable the BIUETOOIN SYSLEIML..........ccucuiieieuetieieitiiiie et tetetes etetesssesess ettt et e b b e s e b e s e ses s e e e ss sebesesesesesesessnse s s essasns 44
6.3.2 OPEN SCAN EXAMPIE.....vivieiivieieiiriitetiieteies ctertetee e ete st ete et ese st e e e st e e seese e esese sebeseesesesseseses 44
6.3.3 StOP SCANNING EXAMPIE.....ueviiiriietiiesiesietiies eetetetetes e tet et te et sessese e sse e st ese e saessesesseseneesas 44
6.3.4 Exit the Bluetooth system....

6.4 SWItCh BIUETOON UEIMO SEIVEN..........i ittt ee ettt sttt b et b et e e e s e e s r e e e feeteasneaseeareeneareenneannees 45
6.4.1 ENADIE the BIUETOOTN SYSIEM........c.eiveuiriiieiiietesiitetisietesisteses ctetstesessese st esesessese st esesa et esesesesaesess sebessssesessesessesesessesessssens 45
6.4.2 ENADIE UBMO SEIVET.....oiiiiiiiiiiiiic it ettt seeesnees 45
6.4.3 SEOP UEIMO SEIVETiitiiiieiietie it eie et eeste ettt e sbeans Saeeateaseeaseeabeanseaseeabeanseaseesbeansesseeate besseennn 45
6.4.4 EXit the BIUETOON SYSIEIM.........vviicvevcieicteieiiies ettt ettt bbb beseaes esnssssssebasasans 45

6.5 SWItCh BIUELOOtN AEIMO CIENT.........iiiiiiei s ettt £aaneeteesr e e e e sb e e nr e e e e e nns 45
6.5.1 ENable the BIUBTOOtN SYSEIM..........uiviiieicieiciiieiiiti e trieies ettt ettt b ettt e sebeteb bbbttt s st ees 45

6.5.2 Enable demo client.

6.5.3 StOP AEMO CHENT......oiiiiiiie e et eenbeenns 45
6.5.4 EXit the BIUEIOON SYSIEM.......cuiuiiiieiiciiicieiiieies ettt ettt stesessesesesesan 45
6.6 Switch Bluetooth multi-connection demo CIENL..............cociiiiiii s e e 45
6.6.1 ENaDIE the BIUELOOIN SYSIEIM.........coiveviieieteteeitisiiiist st tetetes esetesesesese s e st st et s seseseseses e e e st s sabeseseseseseseseese s s s ssens 45
6.6.2 Enable multi-connection demo CIENtccccoiiiiiiiiiiie v 45

Machine Translated by Google

W Winner Micro

IV EREBTERET

6.6.3 StOP AEMO CIENL.....ctiiiiiiieii et ettt ettt resnnen 45

6.6.4 EXit the BIUBTOOTN SYSIEM........cuiuiiieircieieiicieiies ettt eees stsesesenesseseeas 45

6.7 Switch BLE-based UART transparent transmission..
6.7.1 ENable the BIUELOOtN SYSIEM.........c.cciiieiiiietetetetetiteece et cteteteteseseae e st et et et et et es et esess st ssesate sbesesesessssssaseseseseseseseaes 46
6.7.2 Enable UART transparent transmission Server/CIEnt SIAE..........ccviviiiiiiiiiiieiis ettt 46

6.7.3 Stop UART tranSparent traNSMISSION.couieiiiieriieriieierires erteeateesteentee et e et seesesesaeesseesreenseess saeeesnesssesseesseenneenreennen 46

6.7.4 Exit the Bluetooth system
6.8 Enable auxiliary WiFi distribution NEtWOIK SEIVICE............ccuiiiiiiiiiiiiis s et 46

6.8.1 Turn on the Bluetooth function and enable the Network diStriDULION SEIVICE.cuwrriieriiriiiies ettt 46

6.8.2 Exit the auxiliary WiFi distribution network service and log off the BIUEtOOth SYSEM.........cccuiiiiiiiiiiiiiiiieies e 46

6.9 W800 Test Mode....

6.9.1 WB00 €NtersS tESt MOUE.......cuiiiiiiieiireite ettt —enteear e ettt esreesne e reanneaie srneeseens 46

6.9.2 W800 EXit SIgNAIING TESL....cviiiiiieiiieiiiesiieiieiis eeeie ettt ssee e e sbee eenbeennes 47

Machine Translated by Google

W Winner Micro
IV\ BRBTERR T

2 Introduction

2.1 Purpose of writing

This document is used to introduce the W800 Bluetooth software system, hardware system and its development Bluetooth application reference, and guide users to learn and understand w800

Bluetooth development.
2.2 Intended audience
Bluetooth application developers, Bluetooth protocol stack maintainers and test related personnel

2.3 Definition of terms

1 BT BlueTooth

2 BECAME Bluetooth Low Energy

3 HCI Host Controller Interface
4 GAP General Access Profile
5 IFS Inter Frame Space

2.4 References

"W800 Chip Product Specifications"

yBluetooth Core spec4.0 and 4.2y

"WM_W800_Bluetooth System Architecture and API Description_V1.0"

"Bluetooth controller spec”

Machine Translated by Google

Winner Micro
IBE A% 1 LT

3 W800 Bluetooth System

3.1 Chip bluetooth design block diagram

3.2 W800 Bluetooth system block diagram

The WB800 Bluetooth system can be divided into application program, host protocol stack, controller protocol stack, Bluetooth baseband, and radio frequency.

The radio frequency part of Bluetooth is shared with the WiFi system.

application API host protocol stack VHCI interface Controller Stack

s \\\ T 'Es

Bluetooth system structure diagram

For the certified HCI serial port operation instructions, refer to the traditional Bluetooth non-signaling test and BLE non-signaling test documents. Specific test method

As shown below:

Machine Translated by Google

W Winner Micro
I\ BBERMET

= AP| - Controller Stack

HCl interface

--Ov'T -4

Bluetooth authentication structure diagram Comprehensive tester

W800 provides a configurable UART port for responding to HCI commands. The comprehensive tester directly controls the control through the UART port

controller. At this time, the host protocol stack is in the freeze state.

3.3 Introduction to NimBLE

3.3.1 NimBLE

NimBLE is an open source Bluetooth 5.0 protocol stack under the Apache Foundation, with complete Host and Controller layers. Occupies less resources,

supports Bluetooth 5.0 features, and also supports Mesh and other functions. Based on FreeRTOS and our Controller, the Host layer is transplanted.

3.3.2 NimBLE directory structure

=4 EMEE =) Fh

}. docs 2021/3/4 10:13 iE=

W ext 2021/1/29 16:43 prg - =

.. nimble 2021/1/29 16:46 igs=

|, porting 2021/1/29 16:46 =

. Makefile 2021/1/29 17:31 i 1KB

The entire nimble protocol stack contains 4 directories: /docs
folder contains some documentation of the nimble protocol stack, suffixed with .rst /ext folder contains the
encryption library used by the nimble protocol stack/nimble folder contains the entire nimble protocol The stack

code implementation/porting folder contains the related implementation of the W800 platform

Machine Translated by Google

3.4 Application Layer Protocol Description

Based on our Controller, the functions supported by the NimBLE protocol stack are as follows: ¥

Privacy 1.2 (LE Privacy 1.2) § Security Management (SM), support for traditional pairing (LE Legacy

Pairing), secure connection (LE Secure Connections), specific key distribution (Transport Specific Key Distribution) ¥ Link layer PDU

data length extension (LE Data Length Extension) § Multi-role concurrency (master (central)/slave (peripheral), server/client) y

Simultaneous broadcast and scan y Low-speed directional broadcast (Low Duty Cycle Directed Advertising) ¥ Connection parameters

request procedure ¥ LE Ping y Complete GATT client, server, and sub-functions y Abstract HCI interface layer

3.4.1 GAP GAP

defines a series of concepts such as roles, modes, and processes. Users need to understand these concepts first, and then configure and use BLE

according to the GAP specification according to their own development needs, so as to realize the broadcast of BLE devices. For example, if the user

needs to develop an application program for sending and receiving BLE broadcasts, then it is necessary to set the relevant modes defined by GAP to

achieve the broadcasting effect. The role description is as follows:

application role

Application Features

Broadcaster is used to send non-connectable broadcasts and respond to scan requests sent by Observer, and cannot communicate with

Observer establishes a connection

The Observer receivgs the broadcast sent by the Broadcaster, and can choose to send a scan request to the Broadcaster,

and receive the scan response

Peripheral is used to sgnd connectable broadcasts and establish a connection with Central according to the connection request received

Central

Receive a connectable broadcast, send a connection request to Peripheral, and establish a connection

3.42ATT

Connected BLE devices use ATT / GATT specification for application data exchange.

ATT defines the concepts of roles and attributes, which are used to store data

ATT role
ATT role Application Features
ATT server The server can define a series of properties for clients to access
ATT client Clients can use the ATT protocol to discover, read, and write server-defined attributes
The

attribute attribute logic results are as follows

Machine Translated by Google

property handle(property type attribute value attribute permissions
0x0000- uuID 0-N bytes Read/Wrfte/Indication/Notification
OXFFFF

1) The attribute handle is allocated by the attribute server;

2) The attribute type is defined by the user or specified by a higher-level specification;
3) The attribute value is defined by the user or specified by a higher-level specification, and is used to save application data;

4) Attribute permissions are defined by the user or specified by a higher-
level specification. The attribute access method-ATT protocol frame

attribute access method is also the ATT protocol frame, which is called ATT PDU (protocol data unit) in the Bluetooth specification.

ATT PDU is used by ATT client to discover, read and write attributes, or used by ATT server to send notification and indication

of attributes.

There are 6 types of ATT PDU as follows:

ATT PDU type describe

Commands ATT PDU sent by the client to the server, the server will not send a response

Requests are ATT PDUs sent by the client to the attribute server, and the server will send a response as a response

Response The server sends the client as a response to the request

Notification is sent from) the server to the client, and the client will not send confirmation as a response

Indication Sent by the server to the client, the client needs to send confirmation as a response
Confirmation Sent by the client to the server as a response to Indication
3.4.3 GATT

GATT is for applications or other configuration files so that ATT clients can communicate with ATT servers.

GATT defines the framework for using the ATT protocol PDU. This framework defines the data exchange process and also defines the
application data exchange format: service (service) and characteristics (characteristics). Through GATT we can discover services, and
read/write or configure the characteristics of peer devices.

GATT roles

are the same as ATT, and GATT also has two roles:

GATT Role Role Description

10

Machine Translated by Google

W Winner Micro

IV BB TERAET

GATT server defines services and characteristics of BLE devices

GATT client sends data requests to access services and characteristics of BLE devices

The GATT role is not fixed, only when the corresponding process is started, the GATT role is determined, and the GATT role is
released when the process ends. Among them: GATT client sends commands and requests to server, and can receive response,
indications and notifications from server; GATT server receives commands and requests from client and sends response, indication

and notification to client.

GATT Data Structure
The GATT configuration file specifies the structure of the data exchange. This structure defines the basic elements: service (service)

and characteristics (characteristics). All services and characteristics are contained in attributes, which are containers for GATT data.

The GATT data structure is shown in the following figure:

11

Machine Translated by Google

Winner Micro
TEE % i 14 P T

Profile
Service Service
: Include
T Uinclude
Characteristic
i; Properties 1
Value
.es 1 Descriptor ;
[= —
: Descriptor '
- o
- o
. ©
Characteristic ' Characteristic
Properties | EL Properties
Value | Value
{ Descriptor j, i Descriptor
o ‘ "
r---.--.----.-’..: ------------- 1 : 13 “' 1l
| Descriptor bl] Descriptor ;

Description of GATT data structure:

1. The top layer is a profile, which can be understood as an application, which consists of one or more

service composition;

2. Each service is composed of characteristic definition and service reference;

3. A feature contains a feature value and other information related to the feature value;

4. Both services and characteristics are stored by the GATT server in the form of attributes.

12

Machine Translated

by Google

3.5 Sample Code Framework Description

3.5.1 Bluetootl

Y m &K@

h system software code location

@

‘ WE00.SDK

|| BuildSet

= ‘

& coxws
W800_SDK
demo

include

Id

platform
arch
commo
drivers

4 app

n

bledsp
btapp
cJSON

dhcpserver

dnsserver

fatfs

hitpelient
ipert
libwebsackets-2

mbe

dtls

mDNS
matt

ntp

The bleapp directory is the bluetooth sample code, users can refer to or make secondary development based on this code. List of application

files:

No applic

Ation module

illustrate

wm_bt_app.c

Host protocol stack main program entry

wm_ble_gap.c

GAP implementation and reporting processing of related events

wm_ble_server_wifi_prof.c

BLE auxiliary distribution network service communication module, responsible for the implementation

of the transport layer

wm_ble_server_wifi_app.c

BLE auxiliary distribution network application protocol processing module,

responsible for the realization of the application layer protocol Realize api

wm_ble_client_api_demo.c

to create demo server function Realize api to create demo client function

wm_ble_server_api_demo.c

wm_ble_client_api_multi_conn_demo.c implement api to create demo client, wh

ich can support connection

Connect 7 demo servers.

wm_ble_uart_if.c

Example of implementing BLE-based UART transparent transmission

4 API Description

4.1 Bluetooth system API

No API nam

e describe

1

int
tls_bt_init(

uint8_t uart_idx)

Running the Bluetooth system, this function will enable the host protocol in turn

and controller protocol stack.

13

Machine Translated by Google

W Winner Micro

A A T

&gV e

tls_bt_deinit(void)

int Stop the Bluetooth system, and modify the function to cancel the host protocol stack and

controller protocol stack in turn.

4.2 Controller API

No AH

| name

describe

tls_bt_status_ttls_bt ctrl_enable(
tls_bt_hci_if_t*p_hci_if,

tls_bt_log_level_t log_level)

Initialize the controller-side protocol stack, allocate memory

and create tasks, etc.

tls_bt_status_t tis_bt_ctrl_disable(void); logout controller protocol stack

tls_bt_status_ttls_ble_set tx_power(
tls_ble_power_type_t power_type,

int8_t power_level);

Set BLE transmit power index

int8_t
tls_ble_get_tx_power(

uint8_t power_type);

Read the transmit power index of the specified work type

tls_bt_ctrl_status_t

tls_bt_controller_get_status(void);

Read the current state of the controller,

bool

wm_bt_vuart_host_check_send_available(void);

Used to determine whether the host can send instructions to the controller

make

tls_bt_status_t
tls_bt vuart_host_send_packet (

uint8_t *data, uint16_t len);

The host protocol stack sends data interface to the controller

tls_bt_status_ttls_bt_ctrl_if_register (

const tls_bt_host_if t *p_host_if);

Register the controller data sending interface, that is, the host

protocol stack receiving data interface

tls_bt status_t

tls_bt_ctrl_sleep (bool enable);

Whether to run the controller to enter on idle

sleep mode

10 bo

pl

tls_bt_ctrl_is_sleep (void);

Reads whether the controller is in sleep mode

11 tls_|

bt_status_t tls_bt_ctrl_wakeup(void) exit sleep mode

12 tls

| bt_status_t
enable_bt_test mode(tls_bt hci_if t

*p_hci_if)

Enter Bluetooth test mode

13 tls| bt_status_t exit_bt_test_mode()

Exit Bluetooth test mode

14

Machine Translated by Google

4.3 Application layer protocol API

4.3.1 GAP

The device management layer is responsible for the general settings of the controller, such as broadcasting,

4.3.1.1 GAP API description

scanning, device name modification and other functions

update_flash);

No AP| name describe
1 int tls_ble_gap_init(void); Initialize the default broadcast and scan parameters; set the device name.
Note: This function is called automatically when the Bluetooth system is running.
2. int tis_ble_gap_deinit(void); Release resources.
Note: This function is automatically called when the Bluetooth system logs out
3 int tls_ble_gap_set_adv_param(Set broadcast parameters
uint8_t adv_type, uint32_t min, uint32_t
max, uint8_t chn_map, uint8_t
filter_policy,uint8_t *dir_mac,uint8_t
dir_mac_type)
a. int start, stop broadcasting
tls_nimble_gap_adv(wm_ble_adv_type_t
type, int duration);
5. int Start and stop scanning
tls_ble_gap_scan(wm_ble_scan_type_t
type, bool filter_duplicate);
6. int tls_ble_gap_set_scan_param(Set scan parameters
uint32_t intv, uint32_t window, uint8_t
filter_policy, bool limited, bool
passive, bool filter_duplicate);
6 int tls_ble_gap_set_name(set device name
const char *dev_name,uint8_t Note: If the device is broadcasting and the broadcast parameter

struct ble_hs_adv_fields
Specify name_is_complete. After setting the name, the wide

After broadcasting needs to be stopped and enabled again, it will take effect.

int tls_ble_gap_get_name(char

*dev_name);

Read device name.
Note: This function first reads the device name saved in Flash

name, if not present, read the device name in ram

int tls_ble_gap_set_data(
wm_ble_gap_data_t type,

uint8_t *data, int data_len);

Used to set custom broadcast data or scan response

Allow

15

Machine Translated by Google

W Winner Micro

IV EREBTERET

o int tls_ble_register_gap_evt(Reporting function for registering GAP events
uint32_t evt_type,

app_gap_evt_cback_t *evt_cback);

10 int tls_ble_deregister_gap_evi(Reporting function for unregistering GAP events
uint32_t evt_type,

app_gap_evt_cback_t *evt_cback);

4.3.2 BLE server
BLE server assumes the role of GATT server. The wm_ble_server_api_demo module provides an example of user program development. The

example function is described as: 1. Create the following service list function and start broadcasting;

fdefine WM _GATT_SVC_UUID OxFFFO

gdefine WM _GATT_ INDICATE UUID OxFFF1l

gdefine WM _GATT WRITE UUID OxFFFZ

static const struct ble_gatt_svc_def gatt_demo_svr sves[] = {
{

/* Service: uart */
.type = BLE GATT SVC _TYPE PRIMARY,
-uuid = BLE UUID16_ DECLARE (WM_GATT_ SVC_UUID),
.characteristics = (struct ble_gatt_chr def[]) { {
.uuid = BLE UUID16 DECLARE (WM_GATT WRITE_ UUID),
.val_handle = &g _ble demo_ attr write handle,
.access_cb = gatt_svr_chr_demo access func,
.flags = BLE_GATT CHR_F_WRITE,
bed
-uuid = BLE UUID16 DECLARE (WM _GATT INDICATE UUID),
.val _handle = &g ble demo attr indicate handle,
.access_cb = gatt_svr chr demo access func,
.flags = BLE_GATT_CHR_F_INDICATEJ

o, /* No more characteristics in this service */

}s
{

0, /* No more services */
|

}i
2. After receiving the other party's connection, update the ATT layer MTU
function; 3. After receiving the other party's connection, if the other party's indication function is received, continue to send specific data to

the other party.

This module provides two external APIs for initialization and logout respectively. The specific codes are as follows:

16

Machine Translated by Google

TAA

Winner Micro
BE R 4 P T

int ﬂs_bl'_“w.r_dﬂmo_ﬂpl_inn(tls_ble_oucpun_func_pcr output func ptr)

{
int re = BLE_HS_EADPD;

if(bt_adapter state == WM_BT_STATE OFF)

TLS_BT_APPL_TRACE ERROR("%s failed rc=%s\r\n", _ FUNCTION_, tls bt rc_2_str(BLE_HS_EDISABLED));

return BLE_HS_EDISABLED;
}

TLS_BT_APPL_TRACE DEBUG("%s, state=&d\r\n", _ FUNCTION_ ,

if{g ble server_state == BLE_SERVER_MODE_IDLE)
{
g_ble_demo_prof_ccmnected = 0;

// step 0: reset other services. Note
rc = ble gatts_reset();
if(xe = 0)

g_ble server_state);

TLS_BT APPL_TRACE ERROR("tls_ble server demo api_init failed rc=%d\r\n", xzc);

return rc;

}

/[step 1: config/ adding the services
rc = wm _ble server demo gatt_svr_init();

if (re = 0)

{

tls_ble register gap_evt (WM _BLE_GAP_EVENT_CONNECT |WM_BLE GAP_EVENT_DISCONNECT |WM_BLE_GAP_EVENT_NOTIFY_ T}
TLS_BT APPL_TRACE DEBUG("### wm ble_server_ api_demo_init \r\n");

g ble uart output fptr = output func ptr;
[*step 2: start the service®/

rc = ble gatts start():

asmart(re ==0);

/ *step 3: start advertisement®/

rc = wm_ble server_api_demo adv(true);

if{ze = 0)

g_ble server_state = BLE_SERVER_MODE_ADVERTISING;

}

lelse

TLS_BT_APPL_TRACE ERROR("### wm ble_server_api_demo_init failed(rc=%d)\r\n", zc);

}
} ? end if g_ble_server_state==B...
else

TLS_BT_APPL_TRACE WARNING("wm ble server api_demo_init registered\r\n");

re = BLE_HS_EALREADY;

:n- tls_ble_server_demo_api_deinit
{
int rc = BLE_HS_EAPP;

if (bt_adapter state == WM_BT_STATE_OFF)
{

TLS_BT_APPL TRACE ERROR({"%s failed re=%s\r\n", _ FUNCTION__, tls bt_rc_2_ str(BLE_HS_EDISABLED));

return BLE HS EDISABLED;
}

TLS_BT_APPL_TRACE_DEBUG("%s, state=td\r\n", _ FUNCTION__, g_ble server state);

if(g _ble server state == BLE_SERVER_MODE_CONNECTED || g _ble server_state

{
g _ble demo_indicate enable = 0;

== BLE_SERVER MODE_INDICATING)

rc = ble gap terminate(g ble demo cann handle, BLE_ERR REM USER _CONN_TERM);

if(zxe == 0)

{

g ble server state = BLE_ SERVER_MODE EXITING:

}
}else if(g ble server_state = BLE_SERVER_MODE_ADVERTISING)

1
rc = tls_nimble gap adv(WM_BLE_ADV_STCP, 0);
if(re = 0)
{
if(g ble uart output fptr)
g_ble uart output fptr = NULL;

g_send pending = 0;

g_ble server_state = BLE_SERVER_MODE_IDLE;

t

}else if(g ble server state = BLE_SERVER MODE_IDLE)

{
re = 0;
lelse

{
}

return rc;
} ? end tls_ble_server_demo_api_deinit ?

rc = BLE_HS_EALREADY;

17

Machine Translated by Google

4.3.2.1 BLE server API Description
The NimBLE protocol stack does not support the function of dynamically adding or canceling the service when the GATT service is running. Therefore, the GATT service must

The service function can only be enabled after the configuration is completed.

No AHI name describe

' int Reset the GATT service list and release resources.

ble_gatts_reset(void)y

2 int Configure the GATT service
ble_gatts_count_cfg(

const struct ble_gatt_svc_def *defs)y

3 int Add GATT service
ble_gatts_add_svcs(

const struct ble_gatt_svc_def *svcs)

4 int Start the GATT server

ble_gatts_start(void)

5 int To a certain conn_handle through the specified attr_handle
ble_gattc_indicate_custom(uint16_t Send indication data
conn_handle, uint16_t chr_val_handle,

struct os_mbuf *int)

6 int To a certain conn_handle through the specified attr_handle
ble_gattc_notify_custom(uint16_t Send notification data
conn_handle, uint16_t chr_val_handle,

struct os_mbuf *int)

4.3.3 BLE client
BLE client assumes the role of GATT client, that is, actively initiates scanning, connection, communication and other applications.
The wm_ble_client_api_demo module provides the following sample functions: 1. Initiate a scan; 2. Initiate a connection

according to whether the broadcast data contains the service field of FFFO;

3. After the connection is established, read the service list of

the other party; 4. Analyze the service list, determine whether the characteristics contain the FFF1 field, and enable the indication,
Print after receiving indication data

5. Separate the servcie list, judge whether the characteristics contains the FFF2 field, and send 0Xaa, Oxbb characters
Section to each

other. With reference to this module implementation, users can develop their own applications.

4.3.3.1 BLE client API Description

No ARI name describe

18

Machine Translated by Google

W Winner Micro

IV BB TERAET

L int Used to establish a BLE connection with the other device

ble_gap_connect(

uint8_t own_addr_type,

const ble_addr_t *peer_addr,

int32_t duration_ms,

const struct ble_gap_conn_params *conn_params,

ble_gap_event_fn *cb, void *cb_arg)

2. int After the connection is established, read the server side

ble_gattc_disc_all_svcs(service list
uint16_t conn_handle,
ble_gatt_disc_svc_fn *cb,

void *cb_arg)

3 Int After the is itis used to with the other party

ble_gattc_exchange_person(Mutual ATT layer MTU function

uintl6é_t conn_handle, ble_gatt_mtu_fn *cb, void

*cb_arg)
4 int Used to send data to the specified conn_handle and
ble_gattc_write_flat(attr_handle

uintl6é_t conn_handle, uint16_t attr_handle,
const void *data, uintl6_t data_len,

ble_gatt_attr_fn *cb, void *cb_arg)

5 int Used to initiate a read operation to the specified
ble gattc read(conn_handle and attr_handle

uintl6_t conn_handle, uintl6_t attr_handle,

ble_gatt_attr_fn *cb, void *cb_arg)

4.4 Bluetooth assisted WiFi distribution network API

BLE assisted WiFi distribution network, as a specific application of BLE server. wm_ble_server_wifi_prof implements the function of BLE profile, responsible for data transmission and

processing, and wm_ble_server_wifi_cfg handles specific communication protocol processing. Such a hierarchical structure makes the application process independent of the specific

transport layer, and the logic level call is clearer.

This part of the API is relatively simple, as follows:

No API pame describe

19

Machine Translated by Google

W Winner Micro

R LT

1tls|

\wifi_set_oneshot_flag(flag)

flag 0: closed oneshot
1: UDPybroadcast+multicasty
2: AP+socket
3: AP+WEBSERVER

4: BT

When the flag is set to 4, it starts/stops the BLE

assisted WiFi distribution network (the Bluetooth

system needs to be enabled before using the

module). Note: 1. After the network distribution is

successful, the BLE distribution network service

will automatically exit and the broadcast will be

turned off. If you need to configure the network

again, please call this APl again. 2. If the network

distribution fails, the user can

secondary configuration

4.4.1 Example of application process

1. broadcast

w800

4.4.2 Auxiliary WiFi distribution network Service

definition Service definition:

Ser

Feature value uuid: 0x2ABC Write & Indication Feature

vice uuidy 0x1824

value description uuid: 2902

Writey BleWiFiyyy APP -> W800yCharacteristic UUIDYOx2ABC

Indication: BleWiFi (W800 -> mobile APP) Characteristic UUID: 0x2ABC

|
|
|
I |
I |
1 |
I—===_ |
~
| 2 2.Scantofind the device |
| (E-—= ok |
|
1 3. Establish a connection |
! i
I Ll
| |
1 |
| |
| 4. Secret key negotiation (send public key) |
| |
1 "]
k Lol
I |
I 5. Key negotiation (returning the key) |
™1 |
e
1 |
| |
I |
I |
| 6. Send configuration information |
' »
1 |
| 7. Return configuration results |
IS |
I [
1 |
I |
I |

20

Machine Translated by Google

WW

Fv\a

inner Micro
TEE % £ 144 P T

4.5 Users realize their own distribution network service

Refer to the example wm_ble_server_demo_prof.c to add a custom service.

5 API usage examples

instructions.

5.1 Enable the Bluetooth system (exit)

The W800 Bluetooth function is disabled by default after the device is reset. If the user wants to use Bluetooth by default, please refer to the following

Step 1, call in the tls_bt_entry() function to turn on the Bluetooth function, and turn off the Bluetooth system call demo_bt_destroy;

/ *This function is called at wm_main.c*/

vo:a tIS_bt_entry
{

}

[/ tls_bt_init(0x01);

voia tis_bt_exit:
i

}

//tls_bt_deinit();

// enable it if you want to turn on bluetooth after system booting

//enable it if you want to turn off bluetooth when system reseting;

Step 2, after the Bluetooth function is successfully turned on, the following callback function will be called, and the user can add his own application here;

stazic voia app_adapter_state_changed_callback c:= oc =tz c status)

{

TLS_BT_APPL_TRACE DEBUG("adapter status = %s\r\n", status==WM_BT_STATE_ON?"bt_state_on":"bt_state_off");

bt _adapter state = status;

#if (TLS_CONFIG_BLE == CFG_ON)
if (status == WM_BT_FTATE_ON)
{

TLS_BT APPL TRACE VERBOSE("init base application\r\n");

/ / at here , user run their own applications;
#if 1

/I tls_ble_wifi_cfg_init();

// tls_ble_server_demo_api_init(NULL);

/ / tls_ble_client_demo_api_init(NULL);

/ / tls_ble_client_multi_conn_demo_api_init();
#endif

lelse

{
TLS_BT_APPL_TRACE VERBOSE ("deinit base application\r\n");

/ / here, user may free their application;

#if 1

tls_ble wifi_ cfg deinit(2);

tls_ble_ server_demo_api_deinit();

tls_ble client demo_api deinit();

tls ble client multi conn demo api deinit();
#endif

5.2 Start up and run (exit) the sample server

course, when the Bluetooth system is running, the user can also exit his own application program at any time.

At the position marked in step 2 in section 4.1, call wm_ble_server_demo_api_init(); at the position marked in step 2 in section

4.1, call wm_ble_server_demo_api_deinit(); the exit function of the application will be released automatically when the Bluetooth system exits. Of

21

Machine Translated by Google

W Winner Micro

IV BB TERAET

5.3 Start up and run (exit) the sample client

At the position marked in step 2 in section 4.1, call wm_ble_client_demo_api_init(); at the position marked in step 2 in section
4.1, call wm_ble_client_demo_api_deinit(); the exit function of the application will be released automatically when the Bluetooth system exits. Of

course, when the Bluetooth system is running, the user can also exit his own application program at any time.

5.4 Run multi-connection (exit) example client on startup

At the position marked in step 2 in section 4.1, call wm_ble_client_multi_conn_demo_api_init(); at the position marked in step 2 in section 4.1, call
wm_ble_client_multi_conn_demo_api_deinit();
The exit function of the application will be released automatically when the Bluetooth system exits. Of course, when the Bluetooth system is running, the

user can also exit his own application program at any time.

5.5 Data exchange function

Use two demo boards to run 4.2 server demo and 4.3 client demo respectively. For specific demo functions, refer to
See descriptions in 3.3.2 and 3.3.3. After
the connection is successful, the server will continuously send data to the client in the form of indication, as shown in the sequence diagram

as shown below:

22

Machine Translated by Google

Winner Micro
AL YT Lika

Server Client

L :

enable bluetooth | enable bluetooth |
/| |
[demo_bt_enable] | [demo_bt_enable] |
bt¢ | :

I |

L |

Add service: 0x1910
enable scan

[llsfbleiserveriadrj service]
[tls_ble_server_add_characteristic]
[tls_ble_server_add descriptor]

[tls_ble_scan]

enable broadcast
[tlsfblefsetﬁadvlfdata]

i create connection
[tls_ble_adv]

|

1 ' [tls_ble_client_connect]

analyze, enable

[tls_ble_client_register_for. notification]

[tl blegcliont \lritnl haractar ?ir\}

enable sending

Cyclic sending r data reception l
|

[llsibleiserverisendimd\%auon]

—---rg------

< ______ [ble._client_demo_gpi_notify_callback]
I I
| |
| |
| 1
Service |D:1902
[Characteristic 0x2B14,GATT_CHAR_PROP_BIT_WRITE] Server
[Characteristic 0x2B10,GATT_CHAR_PROP_BIT_INDICATE]
[Descriptor 0x2902] service description

5.6 Multi-connection function

The WB800 Bluetooth system acts as a central device and supports connection of up to 7 peripheral devices. An example configuration for this feature is as follows:

1. Run 7 BLE server devices respectively. Refer to 5.2 for configuration mode. 2. Run 1 BLE client that

supports multi-connection function. Refer to 5.4 for configuration mode.

At this point, the client will initiate scanning and connection functions in sequence until the connection to 7 BLE servers is successful.

Note: Limited to the performance of the controller side, when the client initiates a connection, the connection parameters must use the following intervals:

Machine Translated by Google

W Winner Micro

IV EREBTERET

static void wm_ble_update_conn_params (struct ble_gap_conn_params *conn params)

{
int i = 0;
for(i = 0; i<MAX CONN_DEVCIE COUNT; i++)
{
if(cann devices([i] .conn_state == DEV_DISCONNCTED)
il
conn params->itvl min = 0x20 + i*lé;
conn_params—->itvl max = 0x22 + i*l6;
return;
}
}
}

5.7 UART transparent transmission function

Based on the data exchange between BLE server and BLE client, the transparent transmission function of UART is realized. The display of this function
The example configuration s as follows

1, Server side, using UART1, default attribute (115200-8-N-1) transparent transmission: called at the mark of chapter 4.1

tls_ble_uart_init(BLE_UART_SERVER_MODE, 0x01, NULL); 2, Client side, using UART1, default

attribute (115200-8-N-1) transparent transmission: called at the mark of chapter 4.1

tls_ble_uart_init(BLE_UART_CLIENT_MODE, 0x01, NULL); After startup, the server starts broadcasting.

After the client scans the broadcast, it connects to the server and analyzes the server

end service list, and after matching, the BLE channel is established. Users can transmit data through UART1.
5.8 Turn on the broadcast

Step 1, call to open the Bluetooth function in the tls_bt_entry() function;

/ *This function is called at wm_main.c*/
woida tS_bt_entry
{
[/tls_bt_init(0x01); //enable it if you want to turn on bluetooth after system booting

}
voia tIS_bt_exit:)

{
[/tls_bt_deinit(); //enable it if you want to turn off bluetooth when system reseting;
}

Step 2, after the Bluetooth function is successfully turned on, the following callback function will be called, and the user calls the broadcast function

tls_ble_demo_adv(1);//Connectable broadcast

24

Machine Translated by Google

W Winner Micro
I\ BBERMET

vo:a app_adapter_state_changed_callback c1s c sczte © status)
{

tls_bt_host_msg_t msag;
mag.adapter_state_change.status = status;
TLS_BT_APPL TRACE DEBUG("adapter status = %s\r\n", status==WM BT_STATE ON?"bt_state_on":"bt_state off");

bt_adapter_state = status;

#if (TLS_CONFIG_BLE == CFG_ON)
if(status == WM_BT_STATE_ON)
{

TLS_BT_APPL TRACE VERBOSE ("init base application\z\n");
/ * those funtions should be called basiclly*/

wm_ble dm init({);

wm_ble client_init();

wm_ble server_init();

//at here , user run their own applications;|
/ / application_run();
demo_ble adw(l);

lelse

TLS_BT_APPL TRACE VERBOSE ("deinit base application\r\n");
wm _ble dm deinit();

wm_ble client deinit();

wm_ble server_deinit();

// here, user may free their application;
/ / application_stop();
demo_ble advi(0);
}
#endif
#if (TLS_CONFIG_BR_EDR == CFG_ON)
[*class bluetooth application will be enabled by user®/
#endif

/ *Notify at level application, if registered*/

if(tls_bt host callback at ptr)

{
tls bt_host_callback at ptr (WM_BT_ADAPTER STATE CHG_EVT, &smsg);

} ? end app_adapter_state_changed_callback ?

25

Machine Translated by Google

TAA

Winner Micro
BE R 4 P T

5.8.1 Default broadcast data configuration

inc tis_ble_wifi_adv cco1 enable)

{
int re;
if (enable)
{

uint3_t own_addr type:;

struct ble _gap adv _params adv params;

struct ble hs adv fields fields;

const char *name;

uint8_t adv_ff_data[] = {0x0C, 0x07, 0Ox00, Dxlo};]

ke

* Set the advertisement data included in our advertisements:

*
»
*

=

W

}‘J
{

1

o Flags (indicates advertisement type and other general info).
o Device name.
o user specific field (winner micro).

memset (&§fields, 0, sizeof fields);

/ * Advertise two flags:
o Discoverability in forthcoming advertisement (general)
o BLE-only (BR/EDR unsupported).

fields.flags = BLE_HS_ADV_F_DISC_CEN |
BLE_HS_ADV_F_BREDR_UNSUP;

name = ble svc gap device name();
fields _name = (uint8_t *)name;
fields.name len = strlen(name);
fields.name is complete = 1;

fields.mfg_data = adv_f£ff_data;
fields.mfg data_len = 4;

rc = ble gap adv_set_ fields(&fields);

if (zxe = 0) {
MODLOG_DFLT (INFO, "error setting advertisement data; rec=%d\r\n",
return rc;

MODLOG DFLT (INFO, “"Starting advertising\r\n");

/* As own address type we use hard- coded value, because we generate
NRPA and by definition it's random */

rc = tls_ble gap adv(WM BLE_ ADV IND);

assert(rc == 0);

end if enable ? else

MODLOG_DFLT(INFO, "Stop advertising\z\n");
rc = ble gap adv_stop();

return rc;

} ? end tls_ble_wifi_adv ?

26

xe);

Machine Translated by Google

W Winner Micro
IV\ BRBTERR T

5.8.2 User-defined broadcast data settings

inc tls_ble_demo_adv uincz = type)

{

}?

int re = 0;
TLS_BT APPL_TRACE DEBUG("§## %s type=%d\r\n", _ FUNCTION__, type);

if (bt_adapter state = WM_BT_STATE_OFF)

il

TLS_BT_APPL_TRACE ERROR("%s failed re=%s\r\n", _ FUNCTION , tls bt rc 2 str(BLE_HS EDISABLED));
return BLE HS_EDISABLED;

}
if (type)
{

}‘,
{

}

uint8_t bt_mac(é] = {0};
uint8_t adv data[] = {
0x0C,0x08, W', 'M', '-=', '0°, '0°, *0°, '0°', '0','0','0', '0°,

0x02,0x01, 0x05,
0x03, 0x19,0xcl, 0x03};
extern int tls_get bt _mac addr(uint8_t *mac);

tls__get_bbt._mac_aclci: (bt._mac) ;
sprintf (adv_data+5, "%02X:%02X:%02X", ,bt_mac[3], bt_mac[4], bt_mac([5]);
adv_data([13] = 0x02; //byte 13 was overwritten to zero by sprintf; recover it;
rc = tls_ble gap set data(WM BLE ADV DATA, adv_data, 20);
switch(type)
{
case 1l:
re = tls ble gap adv(WM_BLE ADV_IND);
break;
case 2:
rc = tls_ble gap adv(WM_BLE_ADV_NONCONN_IND);
break;
default:
/*AT/DEMO cmd only support adv_ind and adv_nonconn_ind mode*®/
return BLE_HS_EINVAL;
}

end if type 7 else

rc = tls_ble gap_ adv(WM_BLE_ADV_ STOP);

return rc;
end tls_ble_demo_adv ?

5.9 Turn on the scan

Step 1, call to open the Bluetooth function in the tls_bt_entry() function;

/ *This function is called at wm_main.c*/

voia tIS_bt_entry

//tls_bt_init(0x01); //enable it if you want to turn on bluetooth after system booting

void ﬂs_bt_exitt)
{

/ /tls_bt_deinit(); //enable it if you want to turn off bluetooth when system reseting;

Step 2. After the Bluetooth function is successfully turned on, the following callback function will be called, and the user calls the scan function

27

Machine Translated by Google

W Winner Micro
I\ BBERMET

stazic void app_adapter_state_changed_callback ci: oc =czce ¢ status)

{
TLS_BT_APPL_TRACE DEBUG("adapter status = %s\r\n", status==WM_BT_STATE_ON?"bt_state_on":"bt_state_off");

bt adapter state = status;
#if (TLS_CONFIG_BLE = CFG_ON)

if(status = WM_BT_STATE ON)

{
TLS_BT APPL TRACE VERBOSE ("init base application\r\n");

/ / at here , user run their own applications;
SiEs

[/ tls_ble_wifi_cfg_init();

// tls_ble_server_demo_api_init{NULL);
//tls_ble_client_demo_api_init{NULL);
//tls_ble_client_multi_conn_demo_api_init();
tls_ble_demo_scan(l);

#endif

lelse

{
TLS_BT APPL TRACE VERBOSE ("deinit base application\r\n");

// here, user may free their application;
#if 1
tls ble wifi cfg deinit(2);
tla_ble server demo_api deinit();
tls_ble_client_demo_api_deinit{);
tls_ble client multi conn_demo_api deinit();
#endif
1

#endif

} ? end app_adapter_state_changed_callback ?

28

Machine Translated by Google

WW

7\

inner Micro
TBE 8 i 144 oL T

static int
ble_gap_evt_cbi=truct ble_gsp event “event, void *arg)
{

struct ble_gap_conn desc desc;
struct ble_hs_adv_fields fields;
int rec = 0;

switch (event->type) {
case BLE GAP EVENT DISC:
rc = ble hs_adv _parse fields(&fields, event->disc.data,
event->disc.length_data);
if (xc I=0) {
return 0;

}
/* An advertisment report was received during GAP discovery. */
print_adv_fields(&fields);
return 0;
case BLE_GAP_EVENT_DISC_COMPLETE:
break;
default:
break;
}

return rc;

} ? end ble_gap_evt_cb ?
L
* Called 1) AT cmd; 2)demo show;
*
* @param type 0: scan stop; 1: scan start, default passive;
*
*
* @return 0 on success; nonzero on failure.
*
:nc tis_ble_demo_scan uince_: type)
{
int rec;
TLS_BT_APPL_TRACE DEBUG("§## %s type=%d\r\n", _ FUNCTION__, type);
if (bt_adapter state == WM_BT_STATE_OFF)
{
TLS_BT_APPL_TRACE_ERROR("%s failed rc=%s\r\n", _ FUNCTION , tls_bt_rc_2_str(BLE_HS_EDISABLED));
return BLE_HS_EDISABLED;
1
if (type)
{
tls_ble register_gap evt(WM_BLE_GAP _EVENT_DISC|WM_BLE GAP_EVENT_DISC_COMPLETE, ble gap evt_cb);
re = tls_ble gap scan(WM_BLE SCAN PASSIVE, false);
}else
{
re = tls_ble gap scan(WM_BLE_SCAN STOP, false);
tls_ble deregister gap_evt (WM_BLE GAP_EVENT_DISC|WM_BLE_GAP_EVENT_DISC_COMPLETE,ble gap evt cb);
1
return rc;
} ? end tls_ble_demo_scan ?

5.10 Open broadcast/scanning in connected state

Step 1, call in the tls_bt_entry() function to turn on the Bluetooth function, and turn off the Bluetooth system call demo_bt_destroy;

voia tis_bt_entry

{
}

demo_bt_enable(); //tum on bluetooth system;

void tls_bt_ex“ ()
i

Hemo bt destroy(); //tumn off blustooth system;

The connection state is divided into Slave mode and Master mode. The following two situations are described respectively. ; 5.10.1 In the connection state

of Slave mode Step 2, in Slave mode, see Section 4.2. Run the demo example of the Ble server. After running, the mobile phone initiates scanning and

connection operations. After the connection is successful, the device side is in Slave mode at this time, and the mobile phone side is in Master mode.

Mode.

29

Machine Translated by Google

5.10.1.1 Turn on broadcast Step

3, [Note] At this time, the device side only supports non-connectable broadcast.

Call tls_ble_gap_set_adv_param to set the broadcast type to non-connectable broadcast Call tls_nimble_gap_adv to start

broadcasting 5.10.1.2 Start scanning Step 4 Refer to 4.4, just call the scanning API directly.

demo_ble_scan(1); 5.10.2 Connection

state in Master mode

Refer to 4.3 Start up and run the demo client function, after the client establishes a connection with the server: 1) It can scan and operate;

2) Unconnectable broadcast operations can be sent

6 Bluetooth AT commands

6.1 Brief description of Bluetooth AT commands

The Bluetooth system can be controlled by AT commands, and the Bluetooth AT commands are divided into 4 categories. The host and controller are used to configure the main

The machine protocol stack and the controller protocol stack, the application layer part is used to configure the Bluetooth application program, and the test part is used to configure

the Bluetooth authentication function (this part includes the application layer).

The meaning of the abbreviation in the Bluetooth AT command is:

abbreviation meaning

CTRL CONTROLLER
BLESC BLE SERVICE
BLESV BLE SERVER
FLASH BLE CLIENT
POW POWER

STS STATUS

OF THE DESTORY
PRM PARAM

FLT FILTER

CT CREATE

CH CHARACTERISTIC
STT START

STP STOP

30

Machine Translated by Google

A Wk B AR 1 LT
OF DELETE
DIS DISCONNECT
SND SEND
IN INDICATION
CONN CONNECT
NTY NOTIFICATION
ACC ACCESS
TEST TESTMODE
IN ENABLE
GS GETSTATUS
TPS TXPOWERSET
TPG TXPOWERGET
6.2 Bluetooth system AT command
6.2.1.1 AT+BTEN
Function:
Enable the Bluetooth system.
Format (ASCII):
AT+BTEN=<uart_no>,<log_level><CR>
+OK=<status><CR><LF><CR><LF>
parameter:
uart_no: serial port index number, defined as follows:
value meaning

uartl The current version only supports UART1

Log_level: log output level, defined as follows:

value

meaning

Turn off log output

Output error level log

Output warn level log

Output api level log

31

Machine Translated by Google

W Winner Micro

IV EREBTERET

4 Output event level log
5 Output debug level log
6 Output verbose level log

return:

status: command response result

value meaning

0 success

Others>1 failed

6.2.1.2 AT+BTDES

Function:

Stop and log off the Bluetooth system.

Format (ASCII):

AT+BTDES<CR>

+OK=<status><CR><LF><CR><LF>

parameter:

See BTEN parameter description

6.3 Bluetooth controller protocol stack AT command

6.3.1.1 AT+BTCTRLGS

Function:

Get control status.

Format (ASCII):

AT+BTCTRLGS<CR>

+OK=<status><CR><LF><CR><LF>

parameter:

status: control status, the return format is defined as follows:

TLS_BT_CTRL_IDLE = (1<<0),

TLS_BT_CTRL_ENABLED = (1<<1),

32

Machine Translated by Google

TLS BT _CTRL_SLEEPING =

TLS_BT_CTRL_BLE_ROLE_MASTER =

TLS BT _CTRL_BLE_ROLE_SLAVE =

TLS_BT_CTRL_BLE_ROLE_END =

TLS_BT_CTRL_BLE_STATE_IDLE =

TLS_BT_CTRL_BLE_STATE_ADVERTISING = (1<<7),

TLS_BT_CTRL_BLE_STATE_SCANNING =

TLS_BT_CTRL_BLE_STATE_INITIATING =

TLS_BT_CTRL_BLE_STATE_STOPPING =

TLS_BT_CTRL_BLE_STATE_TESTING =

6.3.1.2 AT+BTSLEEP

Function:

(1=<<2),

(1<<3),

(1<<4),

(1<<5),

(1<<6),

(1<<8),

(1<<9),

(1<<10),

(1<<11),

Set the sleep mode when the controller is idle. The current version does not support

Format (ASCII):

AT+BTSLEEP=<cmd><CR>

+0OK<CR><LF><CR><LF>

parameter:

cmd: control command, defined as follows:

value

meaning

Prevent the controller from entering sleep

Allow the controller to go to sleep

6.3.1.3 AT+BLETPS

Function:

Configure the transmit power for a specific type of BLE. The current version only supports the default power setting

Format (ASCII):

AT+BLETPS=<type> <level><CR>

+OK<CR><LF><CR><LF>

parameter:

type: ble type, defined as follows:

33

Machine Translated by Google

WWmner

)JS'C gt

1

Iy

Micro

» \. i f”t FE’. Ji
value meaning
0 specific connection handle
1 specific connection handle
2 specific connection handle
3 specific connection handle
4 specific connection handle
5 specific connection handle
6 specific connection handle
7 specific connection handle
8 specific connection handle
9 broadcast
10 scanning
1 default power
level: power index value.
value Meaning dBm
1 1
2 4
3 7
4 10
5 13
6.3.1.4 AT+BLETPG
Function:
Get BLE specific type. The current version only supports default power gain
Format (ASCII):
AT+BLETPG=7<CR>
+0OK=<level><CR><LF><CR><LF>
parameter:
type: ble type, defined as follows:
value meaning

34

Machine Translated by Google

&YV a

specific connection handle

specific connection handle

specific connection handle

specific connection handle

4 specific connection handle
5 specific connection handle
6 specific connection handle
7 specific connection handle
8 specific connection handle
9 broadcast
10 scanning
11

default power

level: power index value. See 4.4.1.5

6.3.1.5 AT+BTTEST

Function:

Set the bluetooth test mode.

Format (ASCIl):

AT+BTTEST=<mode><CR>

+OK<CR><LF><CR><LF>

parameter:

mode: test mode, defined as follows:

value

meaning

Exit Bluetooth test mode

Enter Bluetooth test mode

6.4 Bluetooth application layer AT command

The Bluetooth application layer is divided into three parts: device management, BLE server and BLE client.

35

Machine Translated by Google

6.4.1 Device management AT commands

6.4.1.1 AT+BLEADV

Function:

Control BLE broadcast sending and stopping.

Format (ASCII):

AT+BLEADV=<mode><CR>

+OK<CR><LF><CR><LF>

parameter:

mode: control mode, defined as follows:

value meaning
o Stop BLE broadcasting
1 Start BLE broadcast

6.4.1.2 AT+BLEADATA

Function:

Configure BLE broadcast content.

Format (ASCII):

AT+BLEADATA=<data><CR>

+OK<CR><LF><CR><LF>

parameter:

data: Broadcast content, in HEX format. The maximum length is 62 characters, equivalent to 31 bytes in hexadecimal.

For example, if the broadcast data is set to 0x02 0x01 0x06 0x03 0x09 0x31 0x32, then the setting command is:

AT+BLEADVDATA=02010603093132. For the specific definition of the broadcast data format, see the description of the

response core specification.

36

Machine Translated by Google

W Winner Micro

FAANER XY Gl

M@ EE MR GI1FET
- Advertising or Scan Response data (31 Octets) -
BHMEE S M BB S
& Significant part el Non-significant part >
AD Structure 1 AD Structure 2 ... JAD Structure ‘N 000...000b
: - — —— O -
o P— ""--...____________ BB AR5 R BNTAD StreutureB A .
=18/ AD Strcuturefitg M 2 -
Length Data Length |AD Type|AD Data.
: | Core_va.2 P2081#011 4k 7 #7043
Inodets Length - n octets RCLCISERE S L
AD Type AD Data

6.4.1.3 AT+BLEAPRM

Function: Configure BLE broadcast parameters.

Format (ASCII):

AT+BLEAPRM=<adv_int_min>,<adv_int_max>,<adv_type><own_addr_type>,<channel_m
ap>,[adv_filter_policy],[peer_addr_type],[peer_addr]<CR>
+OK=<adv_int_min><adv_int_max>,<adv_type><own_addr_type>,<channel_map>,<ad

v_filter_policy>,<peer_addr_type>,<peer_addr><CR><LF><CR><LF>

parameter:

adv_int_min: Minimum broadcast interval, value range: 0x0020 0x4000. Note that when the broadcast type value is greater than
When equal to 3, the value range: 0Xa0~0x4000
adv_int_max: maximum broadcast interval, value range: 0x0020 0x4000. Note that when the broadcast type value is greater than

When equal to 3, the value range: 0Xa0~0x4000

adv_int_min and adv_int_max fill in the hexadecimal format, such as 10, FF, etc. adv_type: broadcast type, defined

as follows:
value meaning
: ADV_TYPE_IND Scannable Connectable Undirected Advertisement
2 ADV_TYPE_DIRECT_IND_HIGH connectable fast directional broadcast
3 ADV_TYPE_SCAN_IND Scannable Unconnectable Undirected Advertisements
4 ADV_TYPE_NONCONN_IND non-connectable non-scannable non-directed broadcast

37

Machine Translated by Google

5 ADV_TYPE_DIRECT_IND_LOW connectable slow directional broadcast

own_addr_type: BLE address type, defined as follows: (This value is automatically added by the protocol stack according to the value of the privacy attribute

Fill, the AT command can be filled with 0 by default)

value meaning
0 BLE_ADDR_TYPE_PUBLIC
! BLE_ADDR_TYPE_RANDOM

channel_map: broadcast channel, defined as follows:

value meaning
: ADV_CHNL_37
2 ADV_CHNL_38
4 ADV_CHNL_39
7 ADV_CHNL_ALL

adv_filter_policy: filter, defined as follows:

value meaning
0 ADV_FILTER_ALLOW_SCAN_ANY_CON_ANY
' ADV_FILTER_ALLOW_SCAN_WLST_CON_ANY
2 ADV_FILTER_ALLOW_SCAN_ANY_CON_WLST
3 ADV_FILTER_ALLOW_SCAN_WLST_CON_WLST

peer_addr_type: peer BLE address type, defined as follows:

value meaning
0 PUBLIC
1 RANDOM

peer_addr: peer BLE address.

38

Machine Translated by Google

6.4.1.4 AT+BLESCPRM

Function:

Configure BLE scanning parameters.

Format (ASCII):

AT+BLESCPRM=<window>,<interval>,<scan_mode><CR>

+OK<CR><LF><CR><LF>

parameter:

windows: scan windows. [0x0004, 0x4000], fill in the hexadecimal format, such as 10, FF, etc.

interval: scan interval. [0x0004, 0x4000]

scan_mode: scan mode. [0,1] passive scan, active scan

The value of interval should be greater than or equal to windows. When interval is equal to windows, it means that the controller is always in

Scanning status, that is, the scanning window is always open.

6.4.1.5 AT+BLESCAN

Function:

Start or stop scanning.

Format (ASCII):

AT+BLESCAN=<mode><CR>

+OK<CR><LF><CR><LF>

parameter:

mode: operation mode, defined as follows:

value meaning
0 stop scanning
: start scan

The scanning result is shown in the figure below:

39

Machine Translated by Google

W Winner

Jak

VA AN S

X

i

A1l

Micro
4 P

6.4.1.6 AT+&BTNAME

Function:

Set/read bluetooth name. Format

(ASCII):

Set AT+&BTNAME=[!/][<name><CR> Read AT+&BTNAME Set

return: +OK,<CR><LF><CR><LF> Read return:

+OK=NAME,<CR>< LF><CR><LF>

Parameters: Name Bluetooth name, ASCII string. The maximum length is 16 bytes.

6.4.1.7 AT+&BTMAC

Function:

Set/read Bluetooth MAC address. Format

(AsClly:

Set AT+&BTMAC=<MAC><CR>

Read AT+&BTMAC setting

return: +OK,<CR><LF><CR><LF>

Read return: +OK=MAC,<CR><LF><CR><LF>

Parameters: Example of MAC

address setting: AT+&BTMAC=c00d308a0b08

6.4.1.8 AT+ BLESSCM

Function:

Specify BLE to scan on a specific channel. Format

(ASCII):

AT+ BLESSCM=CH

+OK

parameter:

CH is defined as:

value meaning
L Specify 37 channels to scan
2 Specify 38 channels to scan
4 Specify 39 channels to scan
7 Frequency hopping, scan at 37, 38, 39 in sequence (default)

40

Machine Translated by Google

6.4.2 BLE assisted WiFi distribution network AT command

6.4.2.1 AT+ONESHOT

Function:

Start or stop the distribution network service.

Format (ASCII):

AT+ONESHOT=<mode><CR>

+OK=<mode><CR><LF><CR><LF>

parameter:

mode: operation mode, defined as follows:

value

meaning

Stop distribution network

Start UDP distribution network

Start SoftAP+Socket distribution network

Start SoftAP+WebServer network configuration

Notice: 4

Start Bluetooth distribution network

After starting the Bluetooth distribution network, the user can use the mobile phone APP to configure the WiFi information. After the network distribution is successful, the network distribution service will

automatically log out, and the blue

Teeth turn off the radio. If you need to configure the network again, please start the Bluetooth distribution

network again. 6.4.3 Status code definition:

6.4.3.1 HCI Reason code definition:

Success 0x00
Unknown HCI Command 0x01
Unknown Connection Identifier 0x02
Hardware Failure 0x03
Page Timeout 0x04
Authentication Failure 0x05
PIN or Key Missing 0x06
Memory Capacity Exceeded 0x07
Connection Timeout 0x08
Connection Limit Exceeded 0x09
Synchronous Connection Limit To A Device Ox0a
Exceeded

ACL Connection Already Exists 0x0b

41

Machine Translated by Google

W Winner Micro

AV BREERET

Command Disallowed 0x0c

Connection Rejected due to Limited Resources 0x0d

Connection Rejected Due To Security Reasons Ox0e
Connection Rejected due to Unacceptable 0xOf
BD_ADDR

Connection Accept Timeout Exceeded 0x10
Unsupported Feature or Parameter Value 0x11
Invalid HClI Command Parameters 0x12
Remote User Terminated Connection 0x13
Remote Device Terminated Connection due to Low 0x14
Resources

Remote Device Terminated Connection due to 0x15
Power Off

Connection Terminated By Local Host 0x16
Repeated Attempts 0x17
Pairing Not Allowed 0x18
Unknown LMP PDU 0x19
Unsupported Remote Feature / Unsupported LMP Oxla
Feature

SCO Offset Rejected 0x1b
SCO Interval Rejected Ox1c
SCO Air Mode Rejected 0ox1d

Invalid LMP Parameters / Invalid LL Parameters Oxle

Unspecified Error Ox1f

Unsupported LMP Parameter Value / Unsupported 0x20

LL Parameter Value

Role Change Not Allowed 0x21
LMP Response Timeout / LL Response Timeout 0x22
LMP Error Transaction Collision 0x23
LMP PDU Not Allowed 0x24
Encryption Mode Not Acceptable 0x25
Link Key cannot be Changed 0x26
Requested QoS Not Supported 0x27
Instant Passed 0x28
Pairing With Unit Key Not Supported 0x29

42

Machine Translated by Google

W Winner Micro
JYN\ BB T

Different Transaction Collision 0x2a
Reserved 0x2b
QoS Unacceptable Parameter Ox2c
QoS Rejected 0x2d
Channel Classification Not Supported 0x2e
Insufficient Security ox2f
Parameter Out Of Mandatory Range 0x30
Reserved 0x31
Role Switch Pending 0x32
Reserved 0x33
Reserved Slot Violation 0x34
Role Switch Failed 0x35
Extended Inquiry Response Too Large 0x36
Secure Simple Pairing Not Supported By Host 0x37
Host Busy — Pairing 0x38
Connection Rejected due to No Suitable Channel 0x39
Found

Controller Busy 0x3a
Unacceptable Connection Parameters 0x3b
Directed Advertising Timeout 0x3c
Connection Terminated due to MIC Failure 0x3d
Connection Failed to be Established 0x3e
MAC Connection Failed 0x3f

7 Example of Bluetooth AT command operation
This chapter combines specific examples to give the specific operation specifications of Bluetooth AT commands. The black screenshot is the response to the AT command.
7.1 Enable and exit the Bluetooth system

7.1.1 Enable Bluetooth system

AT+BTEN=1.0

+0K=0,1

7.1.2 Exit the Bluetooth system

AT+BTDES

+0K=0,0

43

Machine Translated by Google

WWmner Micro

K e Ak AL T

_.

7.2 Switch example broadcast

7.2.1 Enable Bluetooth system

AT+BTEN=1.0

7.2.2 Open connectable broadcast example

AT+BLEDMADV=1

WwM_I] <0:20:53 6> ### tls_ble_demo_adv type=1
starting advertising
AP procedure initiated: advertise; disc_mode=2 adv_channel_map=0

own_addr_type=0 adv_filter_policy=0 adv_itvi_min=64 adv_itvl_max
64
oK

7.2.3 Example of stopping broadcasting

AT+BLEDMADV=0

(J_\F' pr‘nc‘udur z

+OK

7.2.4 Exit the Bluetooth system

AT+BTDES

7.3 Switch example scan

7.3.1 Enable Bluetooth system

AT+BTEN=1.0

7.3.2 Open scan example

AT+BLEDMSCAN=1

7.3.3 Example of stop scanning

AT+BLEDMSCAN=0

44

Machine Translated by Google

W Winner Micro
JYN\ BB T

7.3.4 Exit the Bluetooth system

AT+BTDES

7.4 Switch example server

7.4.1 Enable Bluetooth system

AT+BTEN=1.0

+0K=0,1

7.4.2 Enable demo server

AT+BLEDS=1

7.4.3 Stop demo server

AT+BLEDS=0

7.4.4 Exit the Bluetooth system

AT+BTDES

7.5 switch example client

7.5.1 Enable Bluetooth system

AT+BTEN=1.0

7.5.2 Enable example client

AT+BLEDC=1

7.5.3 Stop the sample client

AT+BLEDC=0

7.5.4 Exit the Bluetooth system

AT+BTDES

7.6 Switch multi-connection example client

7.6.1 Enable Bluetooth system

AT+BTEN=1.0

+0K=0,1

7.6.2 Enable multi-connection demo client

AT+BLEDCMC=1

7.6.3 Stop demo client

AT+BLEDCMC=0

7.6.4 Exit the Bluetooth system

AT+BTDES

45

Machine Translated by Google

WWmner Micro

\ BERET

7.7 Switch UART transparent transmission

7.7.1 Enable Bluetooth system

AT+BTEN=1.0

+0K=0,1

7.7.2 Enable UART transparent transmission Server/Client

AT+BLEUM=1,1 //Enable the server side of UART transparent transmission, use UART1 transparent transmission

AT+BLEUM=2,1 //[Enable the client end of UART transparent transmission, use UARTL1 transparent transmission

7.7.3 Stop UART transparent transmission

AT+BLEUM=0,1 //Close UART transparent transmission mode on server side

AT+BLEUM=0,2 //Close UART transparent transmission mode on client side

7.7.4 Exit the Bluetooth system

AT+BTDES

7.8 Enable auxiliary WiFi distribution network service

7.8.1 Turn on the Bluetooth function, enable the network distribution

AT+BTEN=1,0 service//enable the Bluetooth system

AT+ONESHOT=4 //Enable the distribution network service At this time, you

can use the APP to perform network distribution operations; note that after the network distribution is successful, the system will automatically cancel the distribution network service.

7.8.2 Exit the auxiliary WiFi distribution network service and log off the Bluetooth system
AT+ONESHOT=0 //Exit distribution network service//Exit Bluetooth

AT+BTDES system

7.9 W800 Test Mode

W800 supports real-time access to the test mode, which can be used by customers to test RF performance and controller function testing and certification
test.
7.9.1 W800 enters test mode

AT+BTTEST=1 //Enter the bluetooth test, at this time you can use the test tool to directly operate the controller through the configured uart port.

46

Machine Translated by Google

r |

Winner Micro
TEE % i 14 P T

=l

Cancel

@ Log Window E. Il HCl Control: comb@115200nfc
10:30.111 comé -- Transport opened ¥ KCI protoccl active [7.8: LE Controller Commands (8 key)
comé@115200nfc
I Hold UPRX & CTS low Feset | [T ARM reset device with DTR strobe
10:30.161 comé -- Protocol set to HCI @ 1 LE_Set_Host_Channel Classification
com6@115200nfc)
10:33.046 comé c> Resec - B -
HCI Command TX Channel (0-39: (F = 2402 + [k * 2 MHz])): [E 00
comé@115200nfc
{03 oc 00] Length_of Test Dats (0-255): F? 10::25
opcode = 0xC03 (3075, "Reset” Packet_Fayload: i‘l’seud.u—ﬁaz\ﬂm bit sequence 9
10:33.069 comé <c Reset — = = e
HCI Command Complete Event LE Remote Connection Parameter Request Negative Reply
811520058 LE_Set_Daks_Length
cont nic LE_Re: efault_Data_Length
[OE 04]: 14 03 OC 00 LE #rits Defsult Data Length
event = OxE (14, "Command Complete") LE Read Local P256_Public_Key

Num_HCI_Command_Packets = Ox14 (20)
Command Opcode = 0xC03 (3075, "Reset”)
Status = 0x0 (0, "Success")

7.9.2 W800 Exit Signaling Test

LE_Generate DHEey
LE_Add_Device_To_Resolving List
LE_Remove Device From_Resolving List
LE Clear_Resolving Lizt

LE_Read Resolving List_Size

LE_Read Peer_Resolvable Address
LE_Read_Local_Resolvable Address
LE_Set_Address_Resolution_Enable
LE_Set_Random_Frivate_Address_Timeout

B

AT+BTTEST=0 //Exit the test mode, at this time the host protocol stack controls the controller.

47

