
Company website: www.winnermicro.com

WM_W800_Bluetooth system architecture and API description

V1.2

Tel: +86-10-62161900

Beijing Lianshengde Microelectronics Co., Ltd. (winner micro)

Address: Room 1802, Yindu Building, No. 67, Fucheng Road, Haidian District, Beijing

1

Machine Translated by Google

http://www.winnermicro.com/

Document modification record

6, Increase broadcast scan coexistence, in slave connection

V0.1

1. 2.6 Traditional Bluetooth Audio

V0.4

2020/7/8 Unified font

Pengxg

4, Supplementary scanning API sample code

Wangm 2019/9/25 [C] Create document

Cuiyc

Pengxg

3, Increase the scan mode parameter, specify the frequency point to scan

4. 3.4.5 Traditional Bluetooth hands-free phone

illustrate

V1.0

Version revision time

V0.2 1. Add the AT command to set the Bluetooth name

2. 2.7 Traditional Bluetooth hands-free phone

V0.5

Coexistence of scanning and non-connectable advertising in connected state

V0.3

5, Add non-connectable broadcast API parameters

Pengxg

2020/8/12 Add traditional Bluetooth function:

author review

Pengxg

2020/8/25 1, Add Bluetooth entry and exit test mode API

scanning function

2, Update and set the broadcast extension parameter API

revision history

2020/7/7

2020/8/17 1, Add API usage example chapter

2. Change the sample code path

3. 3.4.4 Legacy Bluetooth Audio

V0.6

2020/12/02 1, add traditional Bluetooth Audio sink function description Pengxg

2

Machine Translated by Google

3, Add traditional Bluetooth SPP function description and

3. Increase broadcast scan coexistence

V1.2

Refer to the API/AT command description chapter

Transparent transmission, multi-connection AT command operation description

2, set broadcast parameters

ÿ

2, Increase the traditional Bluetooth HandFree function description

2, Add example server, client, UART

Transparent transmission, multi-connection API description

1, set broadcast, scan response data

Refer to the API/AT command description chapter

Pengxg

2021/05/17 Modify the AT command:

2021/03/05 1, add example server, client, UART

broadcast coexistence

and AT command description

in

Scanning and non-connection in the master connection state

4, Increase the traditional Bluetooth working mode setting API

API/AT command description chapter

V1.1

3

Machine Translated by Google

Table of contents

1 Introduction 10

2 W800 Bluetooth system...................................11

2.4.2 BTA (Bluetooth Appication)14

Table of contents... 4

1.4

2.4 Description of each application layer protocol......................................13

2.4.1 BTIF (Bluetooth Profile Interface)..13

Documentation Modification History 2

1.3

References...10

2.3.2 Architecture diagram of bluedroid...................................12

4

Definition of Terms..10

2.3.1 bluedroid ..12

2.4.7 bluedroid protocol stack message passing and processing................................... ...14

1.2

2.3 Introduction to Bluedroid...................................12

2.4.5 HCI...14

2.4.6 GKI module...14

Intended Reader10

2.1

2.2 W800 Bluetooth system block diagram...................................11

2.4.4 BTMÿBluetooth Manager ÿ...14

1.1

Chip bluetooth design block diagram...................................11

Purpose of writing...10

2.4.3 BTU ÿBluetooth Upper Layerÿ..14

Machine Translated by Google

2.5.3 GAP...15

3 API description... 19

Traditional Bluetooth Hands-Free Phone..37

2.5.2 GATT..15

2.8.1

3.4.3 BLE client...30

3.4.4 Legacy Bluetooth Audio...................................34

Bluetooth System Software Code Location17

2.8 Source Code Framework Description...................................17

2.5.1 THAT15

3.4.2 BLE server..25

2.5 Introduction to BLE..14

2.7 Traditional Bluetooth hands-free phone...16

3.4.1 Device Management..twenty three

3.5.1

5

2.6 Legacy Bluetooth Audio...................................16

3.4 Application layer protocol API...................................twenty three

3.5 Bluetooth assisted WiFi distribution network API40

Software module calling relationship...................................41

2.5.5

3.2 Host-side API...20

3.3 Controller-side API..twenty two

3.4.6 SPP..39

Central and Peripheral...16

3.1 Bluetooth system API...................................19

2.5.4 SMÿSecurity Managerÿ ..15

3.4.5

Machine Translated by Google

4 API usage examples................................... 42

4.5.2

5.4 Bluetooth controller protocol stack AT command...................................56

3.6 Users realize their own distribution network service...................................42

User-defined broadcast data settings...................................47

5.2 Bluetooth system AT command...................................53

5.3 Bluetooth host protocol stack AT command...55

4.5.1 Default broadcast data configuration...................................47

3.5.3 Auxiliary Distribution Network Service..42

5.1 Brief description of Bluetooth AT commands...................................52

3.5.2 Example of application process...42

4.5 Turn on the radio..45

5 Bluetooth AT command.. 51

4.4 Data exchange function...................................44

4.7.2 Connection status in Master mode...................................51

5.5.2 BLE server AT command...70

6

4.3 Start up and run (exit) demo client...................................43

4.7 Turn on broadcasting/scanning in connected state...................................50

4.7.1 In the connection state of Slave mode...................................50

5.5.1 Device management AT command...63

4.2 Start up and run (exit) the demo server...................................43

4.6 Turn on the scan..47

4.1 Bluetooth system enable (exit)43

5.5 Bluetooth application layer AT command...62

Machine Translated by Google

5.5.6 Traditional Bluetooth audio AT command...................................84

Turn on the Bluetooth function and enable the network distribution service................................... ..92

6.3.6 Start the service..94

5.5.5 BLE assisted WiFi distribution network AT command...................................83

6.2 Enable auxiliary WiFi distribution network service...................................92

6.3.4 Adding eigenvalues...93

6.3.5 Add feature value description...93

5.5.4 Example of server client communication based on AT command...................................83

6.1.1 Enable the Bluetooth system...92

6.1.2 Exit the Bluetooth system...92

6.3.3 Adding services...93

5.5.3 BLE client AT command...77

6.1 Enable and exit the Bluetooth system...92

6.3.2 Create server93

6 Example of Bluetooth AT command operation................................... 92

6.3.1 Enable the Bluetooth system...93

7

5.5.9 Status code definition:86

6.2.2 Exit the auxiliary WiFi distribution network service and log off the Bluetooth system...................... ..93

6.3 Example of BLE server operation...................................93

6.3.8 Turn on the broadcast...94

5.5.8 SPP AT command...85

5.5.7 AT command of traditional Bluetooth hands-free phone...................................85

6.2.1

6.3.7 Configure broadcast data...94

Machine Translated by Google

6.3.12 Characteristic value data obtained by mobile phone profile......................................97

6.4.2 Enable Bluetooth on W800..101

6.4.11 W800 logout client 103

6.3.11 Enable the Indication function on the mobile phone...................................97

6.4.1 Create a server on the mobile phone...100

6.4.9 W800 read characteristic value...................................103

6.4.10 W800 disconnected...103

6.3.10 Initiate a connection on the mobile phone side...95

6.3.18 Log out of Bluetooth service...100

6.4 Example of BLE client operation...................................100

6.4.8 W800 read service list...................................102

6.3.9 The mobile phone starts to scan...94

6.3.17 Logout server100

6.4.7 List of W800 scanning services...102

6.3.16 Deleting a service...99

6.4.6 W800 connect to server... 102

6.3.15 Stopping the service..99

6.4.4 W800 start scanning......................................102

6.4.5 W800 stops scanning...102

8

6.3.14 Disconnect from mobile phone...................................99

6.3.13 Read the descriptor on the mobile phone side...................................98

6.4.3 W800 create client101

6.4.12 W800 log out of Bluetooth service...................................103

Machine Translated by Google

6.7 Example of SPP operation...................................106

6.8.1 W800 enters test mode...106

6.6 Example of traditional Bluetooth hands-free phone operation................................... 106

6.8 W800 Test Mode..106

6.8.2 W800 Exit Signaling Test...................................106

9

6.5 Example of Legacy Bluetooth Audio Operation...................................105

Machine Translated by Google

1 Introduction

1.4 References

1.1 Purpose of writing

1.3 Definition of terms

1.2 Intended audience

Bluetooth development.

2

5 HFP

This document is used to introduce the W800 Bluetooth software system, hardware system and its development Bluetooth application reference, and guide users to learn and understand w800

BT

4 A2DP

Hands-Free Profile

1 BlueTooth

Advanced Audio Distribution Profile

Description/Definition

Host Controller Interface

10

Ordinal term/abbreviation

HCI

ÿBluetooth Core spec4.0 and 4.2ÿ

"Bluetooth controller spec"

3

BECAME

"W800 Chip Product Specifications"

Bluetooth application developers, Bluetooth protocol stack maintainers and test related personnel

Bluetooth Low Energy

Machine Translated by Google

Baseband / RF

VHCI interface

HCI interface

Bluetooth system structure diagram

API

2.2 W800 Bluetooth system block diagram

The radio frequency part of Bluetooth is shared with the WiFi system.

2.1 Chip bluetooth design block diagram

The W800 Bluetooth system can be divided into application program, host protocol stack, controller protocol stack, Bluetooth baseband, and radio frequency.

For the certified HCI serial port operation instructions, refer to the traditional Bluetooth non-signaling test and BLE non-signaling test documents. Specific test method

As shown below:

2 W800 Bluetooth system

11

host protocol stackapplication Controller Stack

Machine Translated by Google

host protocol stack Controller Stackapplication API

Bluetooth authentication structure diagram

PAUSE state

Comprehensive tester

Baseband/ RF

2.3 Introduction to Bluedroid

W800 provides a configurable UART port for responding to HCI commands. The comprehensive tester is directly controlled through the UART port

2.3.1 bluedroid

controller. At this time, the host protocol stack is in the freeze state.

2.3.2 Architecture diagram of bluedroid

Bluedroid includes the traditional Bluetooth and Bluetooth low energy protocol stacks, and uses the standard HCI protocol to interact with the controller.

We ported bluedroid7.0, and replaced the internal task with our own microkernel mechanism.

12

HCI interface

Machine Translated by Google

As a Bluetooth core service, the Bluetooth Stack module consists of Bluetooth Application Layer (BTA) and

2.4.1 BTIF (Bluetooth Profile Interface)

Bluedroid is mainly divided into 3 parts: BTIF, BTA, Stack.

BTE: the internal processing of bluedroid, which can be subdivided into BTA, BTU, BTM, HCI, etc.

The application operates the Profile through the Instance

2.4 Description of each application layer protocol

Bluetooth Embedded System (abbreviated as BTE) consists of two parts.

Provide the interface of all profile function lines to the upper layer JNI. There is also Bluetooth Interface Instance in this layer, so

carry out.

There are Profile operation interfaces registered in it (GAP, AV, DM, PAN, HF, HH, HL, Storage, Sockets). Client

BTIF: The medium between the Bluetooth Application task (BTA) and the JNI layer (also known as the glue layer on the Internet).

After we transplanted, we kept the three layers of STACK, BTA and simplified BTIF. User-developed applications are directly based on the BTIF layer

13

Machine Translated by Google

All BTA messages are sent to BTU_TASK and processed by bta_sys_event; if it is a Gatt related message,

2.4.6 GKI module

The BLE communication method is extremely tight. The device exposes services for sending and receiving data, which contain content called characteristics for

Layer, the request is sent to the BTA layer for processing by means of message sending.

HCI: Read and write data to Bluetooth HW. Interface between host and BT controller.

BLE delivers short data packets as needed and then shuts down the link, one of the reasons for BLE's low power consumption. Compared to regular bluetooth

In the traditional pairing method, BLE devices only connect when they need to send and receive information.

BTA: Bluetooth application layer. Refers to the implementation and processing of each profile in bluedroid. The request from the upper layer goes through the BTA

BTM: Management layer in Bluedroid. Bluetooth pairing and link management

2.4.5 HCI

2.5 Introduction to BLE

2.4.2 BTA (Bluetooth Appication)

2.4.4 BTMÿBluetooth Manager ÿ

Communication in the Bluetooth protocol stack is accomplished through message queues.

BTU: Undertake BTA and HCI

2.4.7 bluedroid protocol stack message passing and processing

2.4.3 BTU ÿBluetooth Upper Layerÿ

Pass messages between threads. The unified management of the process is mainly realized through the variable gki_cb. GKI module in Bluedroid

Mainly used for inter-thread communication.

Stack: realizes the bottom layer operation of Bluetooth.

Handled by bta_gatt_hdl_event.

Kernel unified interface. This layer is an adaptation layer, adapted to OS-related processes and memory-related management, and can also be used for

14

Machine Translated by Google

ATT is an optimized protocol designed specifically for BLE devices. ATT works by sending as few bytes of data as possible. Place

rate measurement"ÿ Characteristicÿ

2.5.1 ATTENTION

Monitor", which may contain multiple Characteristics, which may contain a feature called "heart

2.5.4 SMÿSecurity Managerÿ

Responsible for security in BLE communication.

Most BLE APIs support searching for local devices and discovering services, characteristics and descriptors about the device.

• Service (Service): A service refers to a collection of characteristics. For example, a service called "Heart Rate

Specify units or measurements, or define acceptable ranges of values

Defines how the device discovers, establishes a connection, and implements binding.

Define data that can be shared. Characteristics can contain descriptors that help define the data.

• Descriptor (Descriptor): The descriptor specifies attributes that can describe characteristic values. A human-readable description can be noted as

2.5.3 GAP

value.

A profile is a specification that describes how a device is used.

• Characteristic: Contains a single data and 0 or more descriptors to describe the characteristic

A GATT profile is a general specification for sending and receiving short pieces of data (called attributes) over a Bluetooth low energy link. current

The BLE application profiles are all based on GATT. The SIG predefines the number of profiles for BLE devices. These

don't message. The attributes transported by the ATT are formatted as characteristics and services.

All attributes have a Universally Unique Identifier (UUID), which is a standard 128-bit string ID that uniquely identifies

2.5.2 GATT

15

Machine Translated by Google

GAP is used for peripheral devices and central devices, each device can play multiple roles, and can only play one role at the same time

Baseband, LMP, L2CAP and SDP are Bluetooth protocols defined in the Bluetooth Core Specification. AVDTP includes a communication

• Hands Free Kit (HF) – This device acts as a remote audio input/output mechanism for the audio gateway and provides several remote

GATT server and GATT client;

A2DP defines protocols and procedures for mono or stereo distribution of high-quality audio content over ACL channels.

HFP defines two roles of audio gateway (AG) and hands-free component (HF):

• Audio Gateway (AG) – This device is an input/output gateway for audio (especially mobile phones).

Central and peripheral;

• Input (SNK) - A device acts as an input device when it inputs a digitized audio stream from an SRC in the same piconet.

• Output (SRC) - The device acts as an output device when it streams digitized audio to the piconet's output.

talk.

2.5.5 Central equipment and peripheral equipment

A2DP defines two roles for audio devices: output and input.

HFP defines the traditional Bluetooth hands-free phone function, describes how the hands-free device can use the gateway device to make and receive calls.

to the input (sink).

2.7 Traditional Bluetooth hands-free phone

A2DP defines the traditional Bluetooth audio transmission specification, describing how stereo audio is transmitted from the media output (source)

AVRC/AVRC CTRL defines the audio and video control transmission protocol, describes the output and output audio and video playback control

specification.

2.6 Legacy Bluetooth Audio

colour.

A signaling entity for stream parameters and a transport entity for handling streams.

16

Machine Translated by Google

The Btapp directory is the bluetooth sample code, users can refer to or carry out secondary development based on this code.

BLE distribution network service communication module

2.8.1 Bluetooth system software code location

Event distribution processing.

2.8 Source Framework Description

Device Management Module

BLE server application management module, responsible for each prof registration and

Function.

Host protocol stack main program entry

illustrate

1

5

Use example.

BLE demo prof example, combined with AT command to give specific application

No application module

List of application files:

BLE distribution network application protocol processing module

wm_bt_app.c

wm_ble_server_wifi_app.c

wm_ble_server.c

wm_ble_server_wifi_prof.c

wm_ble_server_demo_prof.c

wm_ble_dm.c

17

3

2

6

4

Machine Translated by Google

A certain characteristic data

Example of implementing BLE-based UART transparent transmission

Bluetooth system device management api definition

Bluetooth system GATT api definition

BLE client sample application, connect to Huawei mobile phone, read

Realize the function of SPP client example

10 wm_bt_audio_sink.c

11

Bluetooth system host and controller api definition

distribution of files

Realize the function of SPP server example

13 wm_ble_server_api_demo.c implements api to create demo client function

describe

BLE client application management module, responsible for application registration and event

12 wm_ble_client_api_demo.c implements api to create demo server function

ordinal header file name

2

Example of a traditional Bluetooth hands-free phone application

The header files involved are as follows

16 wm_ble_uart_if.c

Application example of traditional bluetooth audio sink demo

7

15 wm_bt_spp_client.c

API definition of traditional Bluetooth Audio sink and source

end specific application example

BLE client demo example, combined with AT commands to give the client

14 wm_bt_spp_server.c

Bluetooth system data structure definition

Wm_ble_client_demo.c

wm_bt_def.h

wm_ble_client.c

wm_ble.h

wm_bt_hfp_hsp.c

wm_bt.h

wm_ble_client_huawei.c

wm_ble_gatt.h

18

Wm_bt_av.h

3

4

5

9

8

1

Machine Translated by Google

Note: This function must wait for tls_bt_disable to be called,

Controller protocol stack.

Controller protocol stack.

Clean up the host system, such as releasing resources and logging off tasks.
3

Traditional bluetooth SPP api definition

Run the Bluetooth system, this function will enable the host protocol and

describe

To stop the Bluetooth system, the modified function will cancel the host protocol stack and

Traditional Bluetooth hands-free phone client-side API definition

No API name

3.1 Bluetooth system API

tls_bt_disable();

hal_system_sleep(100);

3 API Description

can be called.

{

And wait for bt_adapter_state to change to OFF,

do

7

1

2

6

tls_bt_enable(

Wm_bt_spp.h

tls_bt_disable(void)

tls_bt_status_t

tls_bt_log_level_t log_level)

tls_bt_host_cleanup()

Wm_bt_hf_client.h

tls_bt_hci_if_t *uart,

tls_bt_status_t

Tls_bt_status_t

19

tls_bt_host_callback_t *scb,

Machine Translated by Google

adapter_state != WM_BT_STATE_OFF);

Unregister the host protocol stack

}while(

The host-side API describes functions such as host protocol stack startup and logout

and create tasks

3.2 Host API

reply pairing response

Initialize the host-side protocol stack and allocate memory

tls_bt_host_cleanup();

Reply to the pin code for BLE pairing

tls_bt_host_callback_t *p_callback,

uint8_t accept,

tls_bt_ssp_variant_t variant

uint8_t accept,

tls_bt_host_enable(

tls_bt_status_t tls_bt_pin_reply(

const tls_bt_addr_t *bd_addr,

const tls_bt_addr_t *bd_addr,

tls_bt_status_t

tls_bt_status_t tls_bt_ssp_reply(

tls_bt_status_t tls_bt_host_disable()

)

describe

tls_bt_pin_code_t *pin_code

No API name

tls_bt_log_level_t log_level)

uint8_t pin_len,

20

3

2

1

4

Machine Translated by Google

tls_bt_status_t tls_bt_set_adapter_property(

10 tls_bt_status_t tls_bt_cancel_bond(

)

const tls_bt_addr_t *bd_addr, int transport

21

uint32_t passkey)

tls_bt_property_type_t type)

const tls_bt_addr_t *bd_addr)

tls_bt_status_t tls_bt_create_bond(

tls_bt_status_t tls_bt_get_adapter_property(

tls_bt_status_t tls_bt_remove_bond(

tls_bt_status_t tls_bt_cancel_discovery()

tls_bt_status_t tls_bt_start_discovery()

const tls_bt_property_t *property)

const tls_bt_addr_t *bd_addr)

Set the adapter attribute value

stop scanning

Initiate pairing

Unpair operation

11

Traditional Bluetooth Scanning

Read the adapter attribute value

Delete pairing information

9

7

8

6

5

Machine Translated by Google

Set BLE transmit power index

An index to read the transmit power for legacy Bluetooth operation

quoted range value

Initialize the controller-side protocol stack and allocate memory

Set the power index range when traditional bluetooth works

Read the transmit power index of the specified work type

Set the output path of the traditional bluetooth sco link

and create tasks

3.3 Controller API

Unregister the controller stack

value

5

int8_t*min_power_level,

No API name

int8_t min_power_level,

tls_bt_log_level_t log_level)

tls_bt_status_t

2

tls_ble_get_tx_power(

tls_bt_status_t

tls_bt_status_t tls_bt_ctrl_enable(

tls_bt_status_t tls_ble_set_tx_power(

tls_bt_status_t

tls_bredr_get_tx_power(

22

int8_t power_level);

tls_bt_hci_if_t *p_hci_if,

tls_bredr_set_tx_power(

int8_t* max_power_level);

7

4 int8_t

int8_t max_power_level);

tls_bredr_sco_datapath_set(

tls_bt_status_t tls_bt_ctrl_disable(void);

describe

uint8_t power_type);

6

3

1

tls_ble_power_type_t power_type,

Machine Translated by Google

8

tls_bt_vuart_host_send_packet (

12 tls_bt_status_t

enable_bt_test_mode(tls_bt_hci_if_t *p_hci_if)

tls_bt_ctrl_status_t

10 tls_bt_status_t

11 tls_bt_status_t tls_bt_ctrl_if_register (

const tls_bt_host_if_t *p_host_if);

15 tls_bt_status_t

bool 9

14 tls_bt_status_t tls_bt_ctrl_wakeup(void)

16 tls_bt_status_t exit_bt_test_mode()

wm_sco_data_path_t data_path);

23

wm_bt_vuart_host_check_send_available(void);

tls_bt_ctrl_is_sleep (void);

13 bool

tls_bt_controller_get_status(void);

uint8_t *data, uint16_t len);

tls_bt_ctrl_sleep (bool enable);

Exit Bluetooth test mode

Read the current state of the controller,

Reads whether the controller is in sleep mode

The host protocol stack sends data interface to the controller

sleep mode

Enter Bluetooth test mode

The device management layer is responsible for the general settings of the controller, such as broadcasting, scanning, device name modification and other functions. The following figure shows the scanning instructions

Whether to run the controller to enter on idle

exit sleep mode

3.4.1 Device Management

make

3.4 Application layer protocol API

Protocol stack receiving data interface

Register the data sending interface of the controller, that is, the host

Used to determine whether the host can send instructions to the controller

Machine Translated by Google

SET_SCAN_EN_CMD

llm_le_set_scan_en_cmd_handler

HCI_LE_Set_

bta_d m_ble_observe

D M

Scan_Enable

BTM_

lld_scan_start

SCAN_START

LLM_LE_

BTA_

order invocation relationship.

3.4.1.1 Device management layer API description

BTIF_GATT

DmBleObserve

btm_ble_

start_scan BleObserve

3.

2: Enable non-connectable broadcast, if configured

Set broadcast parameters

tls_bt_status_t tls_ble_adv(uint8_t adv_type); 1.

tls_ble_set_adv_data(tls_ble_dm_adv_data_t *data)

1: Enable discoverable connectable broadcast

2.

describe

Set broadcast contenttls_bt_status_t

No API name

0: turn off broadcasting

broadcast

24

If scan resp is set, it is scannable

tls_bt_status_t tls_ble_set_adv_param

LLD STACK HCI_H4 user HCIC_ELFBTIF LLM_TASK BTA

Machine Translated by Google

tls_bt_status_t tls_ble_scan(bool start);

4. tls_bt_status_t tls_ble_set_adv_ext_param(

int window, int interval,uint8_t scan_mode);

tls_ble_dm_triger_callback_t *p_callback)

Set broadcast extension parameters, if not

5.

tls_ble_set_scan_param(

(you hand,

(tls_ble_dm_adv_param_t *param)

tls_bt_status_t

6

Set scan parameters

tls_bt_status_t tls_dm_evt_triger

25

It is recommended to use 3.

6.

Register for asynchronous processing events

Pretty sure how to populate the parameter body, stronglytls_ble_dm_adv_ext_param_t *param);

start/stop scanning

BLUEDROID

_ble_server

_wifi_c'f'g

W m_ble_server

_wifi_prof

W m_ble_server

_demon_prof

W m_ble_server

_demo1_prof

W m_ble_server

_demo2_prof

w m_ble_server

W m STACK

BLE server application relationship diagram

APP

btif

3.4.2 BLE server

Machine Translated by Google

The BLE server assumes the role of slave, and the wm_ble_server module provides an interface description for user program development, based on

The wifi distribution network of BLE is a specific application. In the figure above, the wm_ble_server_wifi_app module is used to process

deal with.

With this module, users can develop their own applications, such as wm_ble_server_demo1_prof, etc. which based on

Body distribution network protocol processing, wm_ble_server_wifi_prof undertakes the logic of service/character/descriptor

3.4.2.1 BLE server API description

tls_ble_server_app_init (

tls_ble_server_app_register (

5

tls _ble_server_add_service(

Called after the machine protocol stack starts.

3 tls_bt_status_t

tls_bt_status_t

tls_bt_status_t 1

Register an app server with a specified UUID to the btif layer

Add service to registered server

Register the event response function of this layer with the btif layer. This function is in the main

tls_ble_server_app_deinit();

server_if);

describe

tls_bt_status_t

4 tls_bt_status_t

tls_ble_server_app_unregister(uint8_t

No API name

Unregister the response function to the btif layer2

Unregister the app server registered in 3

tls_ble_callback_t *p_callback)

tls_bt_uuid_t *uuid)

26

Machine Translated by Google

int transport)

int inst_id, int primay,

int properties, int permission)

tls _ble_server_stop_service (

int service_handle,

uint16_t uuid,

tls_bt_status_t

tls_bt_status_t

tls_bt_status_t

Run the added service

9

27

6

tls _ble_server_add_descriptor(

int server_if, int service_handle,

int service_handle,

int server_if,

tls_bt_status_t

uint16_t handle,

int permissions)

Out of service

int server_if,

int server_if, int service_handle)

Add a description of the characteristic value to a specified service

uint16_t uuid, int num_handles)

8

Add a characteristic value to a specified service

7

tls _ble_server_start_service(

tls _ble_server_add_characteristic(

int server_if,

Machine Translated by Google

int server_if, int service_handle)

const bt_bdaddr_t *bd_addr,

Send read/write response

delete added service

int server_if,

int conn_id, int len,

int confirm, char *p_value)

tls _ble_server_delete_service (

Disconnect from the client13 tls_bt_status_t tls_ble_server_disconnect(

int attribute_handle,

10 tls_bt_status_t

uint8_t is_direct, int transport)

int server_if,

int auth_req, uint8_t *value,

28

const bt_bdaddr_t *bd_addr,

tls _ble_server_send_indication(

int conn_id, int trans_id,

int offset, int attr_handle,

int server_if,

Send Indication, Notification message14 tls_bt_status_t

tls_ble_server_send_response(

Connect client operation [reserved]12 tls_bt_status_t tls_ble_server_connect(

int conn_id)

15 tls_bt_status_t

Machine Translated by Google

BLE scanning

tls_ble_server_add_service

tls_ble_server
_sto'p_service

tls_ble_server
_add_characteristic

tls_ble_server
_delete_service

tls_ble_adv

tls_ble_server
_add_descriptor

tls_ble_server_app_register

tls_ble_server_app_u nregister

tls_ble_server
_start_service

int length)

29

STACK APP GATT_API
APP APP

data transmission

tls_ble_server_app_register

tls_ble_server_app_init

[parameter]

[parameter]

tls_ble_server_app_d einit

3.4.2.2 BLE server creation/logout process description

Machine Translated by Google

Provides an interface description for user program development, based on this module, users can develop their own application programs.

3.4.3 BLE client

The BLE client assumes the role of master, that is, actively initiates applications such as scanning, connection, and communication. wm_ble_client module

GATT_API STACK BTIF BTA

tls_ble_c b

tls_ble_c b

AddCharacteristic

tls_ble_c b

tls_ble_server_app_register

BTA_GATTS_API_CREATE_SRVC_EVT

tls_ble_server_

add_characteristic
BTIF_GATTS_

BTIF_GATTS_REGISTER_APP

BTA_GATTS_CREATE_EVT

WM_BLE_SE_REGISTER_EVT

BTA_GATTS_API_ADD_CHAR_EVT

WM_BLE_SE_CREATE_EVT

WM_BLE_SE_ADD_CHAR_EVT

30

BTIF_GATTS_CREATE_SERVICE

BTA_GATTS_REG_EVT

tls_ble_server_app_init

BTA_GATTS_CreateService

tls_ble_server_

add_descriptor

tls_ble_server_add_service

tls_ble_c b

ADD_CHARACTERISTIC

BTA_GATTS_API_ADD_CHAR_EVT

BTA_GATTS_AppRegister

BTA_GATTS_

Machine Translated by Google

btif

3

5

4

W m_ble_client_

demo0_prof

W m_ble_client_

demo1_prof

W m_ble_client_

demon_prof

w m_ble_client

W m_ble_client_

demo2_prof

BLE client application structure diagram

APP STACK

describe

Log off the specified client

Connect to a specified server

Register the message on the client side with the btif layer

3.4.3.1 BLE client API description

message response function

1.

Response function for unregistration

No API name

Register the specified client with the btif layer

2. tls_bt_status_t tls_ble_client_app_deinit(void)

tls_bt_status_t

tls_bt_status_t

tls_ble_callback_t *p_callback)

tls_ble_client_connect (

tls_ble_client_app_init(

31

int client_if, const bt_bdaddr_t *bd_addr,

tls_ble_client_unregister_client(int client_if)

tls_bt_status_t

tls_ble_client_app_register (

tls_bt_uuid_t *uuid)

tls_bt_status_t

BLUEDROID

Machine Translated by Google

tls_bt_status_t

tls_ble_client_search_service(

11 tls_bt_status_t

int client_if, uint8_t start)

tls_bt_status_t

int len, int auth_req, char *p_value)

tls_ble_client_listen (

int conn_id, uint16_t handle, int write_type,

uint8_t is_direct, int transport)

tls_bt_status_t

int client_if, const bt_bdaddr_t *bd_addr)

tls_ble_client_write_characteristic(

12 tls_bt_status_t

32

tls_ble_client_refresh (

10 tls_bt_status_t

int conn_id)

tls_bt_status_t

int conn_id, uint16_t handle,int auth_req)

int client_if, const bt_bdaddr_t *bd_addr,

tls_ble_client_disconnect(

int conn_id, uint16_t filter_uuid)

tls_ble_client_read_characteristic(

Write to a specified eigenvalue

Disconnect from the server

Scan the list of server-side attribute values

list of values

Refresh the properties of the specified server

Listen for connections from the server

Read a specified characteristic value

operate

Read a specified characteristic value description

6

9

8

7

Machine Translated by Google

int conn_id, int execute)

tls_ble_client_deregister_for_notification (

tls_ble_client_configure_mtu(int conn_id, int mtu)

18 tls_bt_status_t

tls_ble_client_execute_write (

16 tls_bt_status_t

17 tls_bt_status_t

14 tls_bt_status_t

int conn_id, uint16_t handle, int auth_req)

uint16_t handle)

tls_ble_client_read_descriptor (

int client_if, const bt_bdaddr_t *bd_addr,

int len, int auth_req, char *p_value)

tls_ble_client_register_for_notification (

int conn_id, uint16_t handle, int write_type,

15 tls_bt_status_t

uint16_t handle)

33

tls_ble_client_write_descriptor (

13 tls_bt_status_t

int client_if, const bt_bdaddr_t *bd_addr,

tls_ble_client_get_gatt_db (int conn_id)

response function

do

the list

Register the message ringing of a specified handle

This instruction executes the prepare write operation

Read the attribute value of the specified connection id

row write operation

meta value

Describe the execution to a specified eigenvalue

Set the maximum transfer order for a connection

Unregister the specified message response function

Machine Translated by Google

[parameter]

tls_ble_server_app_register

tls_ble_client_app_init

tls_ble_client_search_service

tls_ble_client_app_d einit

tls_ble_client_app_unregister

3.4.3.2 BLE client creation/logout process description

No API name

3.4.4 Traditional Bluetooth Audio

Information response function, initialize sink function

The traditional Bluetooth audio API provides audio transmission and playback control interfaces, and the currently released version only supports the sink function.

Register Audiosink message with btif layer1.

describe

tls_ble_client_get_gatt_d b

tls_ble_s'can
[parameter]

tls_ble_client_app_register

BLE broadcast

data transmission

tls_ble_client_disconnect

tls_ble_client_connect

tls_bt_av_sink_init (

34

tls_bt_status_t

GATT_API
APP APP

APP STACK

Machine Translated by Google

2. tls_bt_status_t tls_bt_av_sink_connect_src (

Function (not yet available)

should, specify the playback state of the track,

10 tls_bt_status_t tls_btrc_get_play_status_rsp(

Message response function, initialize source

tls_bt_status_t tls_btrc_init(tls_btrc_callback_t callback) initialize AVRC function

Send the call to GetPlayStatus

9

Create a connection with the source side

Unregister the Audio sink function

Register Audiosink message with btif layer

8

can

Logout of souce function (not available yet)

open)

Returns the element information of the current track11 tls_bt_status_t

Disconnect the connection with the sink side (not yet

open)

information

Disconnect the same source side connection

Create a connection with the sink side (not yet

Track time and elapsed playing time

tls_btrc_play_status_t play_status,

tls_bt_a2dp_src_callback_t callback)

tls_bt_a2dp_sink_callback_t callback)

tls_bt_status_t tls_bt_av_src_init(

tls_bt_status_t tls_bt_av_src_deinit(void)

35

uint8_t num_attr,

tls_bt_addr_t *bd_addr)

tls_bt_status_t tls_bt_av_sink_deinit(void);

tls_bt_status_t

tls_bt_av_src_disconnect(tls_bt_addr_t *bd_addr)

tls_bt_status_t tls_bt_av_sink_disconnect(

tls_btrc_get_element_attr_rsp(

tls_bt_av_src_connect_sink(tls_bt_addr_t *bd_addr)

uint32_t song_pos)

tls_bt_addr_t *bd_addr)

uint32_t song_len,

tls_bt_status_t

5

4

6

3

7

Machine Translated by Google

15 tls_bt_status_t

tls_btrc_ctrl_change_player_app_setting(

12 tls_bt_status_t tls_btrc_register_notification_rsp(

tls_bt_addr_t *bd_addr, uint8_t abs_vol, uint8_t label)

19 tls_bt_status_t

14 tls_bt_status_t tls_btrc_deinit(void)

17 tls_bt_status_t

tls_btrc_ctrl_set_volume_rsp(

key_state);

18 tls_bt_status_t

tls_btrc_element_attr_val_t *p_attrs)

16 tls_bt_status_t tls_btrc_ctrl_send_passthrough_cmd(

tls_bt_addr_t *bd_addr, uint8_t key_code, uint8_t

*attrib_vals)

tls_btrc_register_notification_t *p_paramÿ

uint8_t num_attrib, uint8_t *attrib_ids, uint8_t

36

tls_btrc_notification_type_ttype,

tls_btrc_event_id_t event_id,

tls_btrc_ctrl_init(tls_btrc_ctrl_callback_t callback)

tls_bt_addr_t *bd_addr,

The volume is an absolute value [0~127]

answer

After receiving the volume change notification, send

Unregister the AVRC function

Send specific control to the source side

To register for an event of interest, after registration

Register AVRC Ctrl function

instruction

Can receive specific event notifications

Change the configuration parameters of the player

13 tls_bt_status_t tls_btrc_set_volume(uint8_t volume) Set the playback volume of the other party, pay attention to the

Send the beep that sets the absolute volume command

Machine Translated by Google

stop speech recognition

Register and enable the hfp client function

describeNo API name

2. tls_bt_status_t

Gateway) audio connection

send response

The traditional Bluetooth hands-free phone API provides a hands-free phone client-side functional interface.

Disconnect the link with the audio gateway side

Disconnect the same audio gateway side (Audio

start speech recognition

3.4.5 Traditional Bluetooth hands-free phone

Gateway) link connection

Gateway) audio connection

20 tls_bt_status_t tls_btrc_ctrl_deinit(void);

Create the same audio gateway side (Audio

Create the same audio gateway side (Audio

Unregister avrc ctrl function

1.

tls_btrc_notification_type_t rsp_type,

tls_bt_status_t tls_bt_hf_client_init(

tls_bt_status_t

tls_bt_status_t

tls_bt_addr_t *bd_addr,

tls_bt_status_t

tls_bt_hf_client_connect(tls_bt_addr_t *bd_addr)

tls_bt_hf_client_start_voice_recognition(void)

tls_btrc_ctrl_volume_change_notification_rsp(

tls_bt_status_t

tls_bt_hf_client_connect_audio(tls_bt_addr_t *bd_addr)

*bd_addr)

37

tls_bthf_client_callback_t callback)

tls_bt_hf_client_disconnect_audio(tls_bt_addr_t

tls_bt_hf_client_stop_voice_recognition(void)

tls_bt_hf_client_disconnect(tls_bt_addr_t *bd_addr)

tls_bt_status_t

uint8_t abs_vol, uint8_t label)

3

6

4

5

7

Machine Translated by Google

frequency module implementation)

Query the current operator name

Number

17 tls_bt_status_t tls_bt_hf_client_send_at_cmd(

Dial the number at the specified location

12 tls_bt_status_t

16 tls_bt_status_t

Data (specific interface implementation depends on audio

quantity

15 tls_bt_status_t tls_bt_hf_client_send_dtmf(char code) send the dtmf value of the number key

Query call list

18 tls_bt_status_t tls_bt_hf_client_send_audio(

Control MIC or speaker sound

Send voice to AutoGateway

11 tls_bt_status_t tls_bt_hf_client_handle_call_action(

Query subscription number information14 tls_bt_status_t

specified AT command

Handle specific in-call responses

Send special to AudioGateway

dial

10 tls_bt_status_t

13 tls_bt_status_t

The number recognized by the request audio gateway

8

9

tls_bt_status_t tls_bt_hf_client_volume_control(

tls_bt_hf_client_dial_memory(int

tls_bt_hf_client_request_last_voice_tag_number(void)

tls_bt_addr_t *bd_addr, uint8_t *p_data, uint16_t

tls_bt_hf_client_query_current_calls(void)

*number)

tls_bt_hf_client_dial(const tls_bt_status_t

tls_bthf_client_call_action_t action, int idx)

tls_bt_hf_client_retrieve_subscriber_info(void)

int cmd, int val1, int val2, const char *arg)

38

char

location)

tls_bt_hf_client_query_current_operator_name(void)

length)

tls_bthf_client_volume_type_t type, int volume)

Machine Translated by Google

Stop SPP function

SPP is based on RFcomm's serial port transparent transmission service API.

3.4.6 SPP

Enable SPP function

19 tls_bt_status_t tls_bt_hf_client_deinit(void)

Unregister the SPP callback interface

Log out of the speakerphone client function

1.

2. tls_bt_status_t tls_bt_spp_deinit()

7

side initiated.

Start the SPP server

Register spp callback interface function

traditional equipment

Create SPP connection, by cient

tls_bt_status_t tls_bt_spp_disconnect(uint32_t handle) disconnect the connection with the Server side

describeNo API name

Query based on MAC address and uuid

39

tls_bt_status_t tls_bt_spp_disable(void)

uint8_t remote_scn,

tls_spp_role_t role,

sec_mask,tls_spp_role_t role,uint8_t local_scn,const

tls_bt_status_t tls_bt_spp_enable(void)

wm_spp_sec_t sec_mask,

tls_bt_spp_start_server(wm_spp_sec_t

tls_bt_spp_init(tls_bt_spp_callback_t callback)

tls_bt_spp_connect(

tls_bt_status_t

tls_bt_status_t

tls_bt_status_t

tls_bt_addr_t * bd_addr, tls_bt_uuid_t *uuid)

tls_bt_spp_start_discovery(

tls_bt_addr_t * bd_addr)

char * name)

3

4

8

5

6

Machine Translated by Google

w m_ble_server

Secondary enable host protocol and controller

Wm_ble_server_wifi_prof undertakes the service function

tls_bt_enable(

ÿ

1

describe

out, the radio is turned off. If you need to configure again

9

BLE fast network configuration

This part of the API is relatively simple, as follows:

flag 0: closed oneshot

ÿ

tls_bt_log_level_t log_level)

Note: 1. After the network configuration is successful, the BLE

That is, data transmission processing

wm_ble_server_wifi_cfg handles specific communication protocol processing. Such a hierarchical structure separates application processing from specific

tls_bt_host_callback_t *scb, protocol stack.

tls_bt_status_t To run the Bluetooth system, this function will depend on

ÿ ÿ

1: UDPÿbroadcast+multicastÿ

3.5 Bluetooth assisted WiFi distribution network API

No API name

2: AP+socket

2 tls_wifi_set_oneshot_flag(flag)

The distribution network service will automatically withdraw

Its relationship diagram is as above

ÿ

As a specific application of BLE server

The input layer is independent, and the logical layer call is clearer.

tls_bt_hci_if_t *uart,

data sending function

Start/stop distribution network

Wm_ble_server
_wifi_cfg

Wm_ble_server
_wifi_prof

BLE wifi fast distribution network application relationship diagram

*p_data, uint16_t length)

tls_bt_status_t tls_bt_spp_write(uint32_t handle, uint8_t

40

Machine Translated by Google

WM_BLE_SE_REGISTER_EVT

WM_BLE_SE_ADD_CHAR_DESCR_EVT

tls_ble_server_add_descriptor

tls_ble_set_adv_data

tls_ble_server_app_register

tls_ble_server_add_characteristic

WM_BLE_SE_ADD_CHAR_EVT

WM_BLE_SE_START_EVT

wm_b t_wifi_cfg_d einit

WM_BLE_SE_CREATE_EVT

wm_ble_server_register_server

tls_ble_server_add_service

WM_BLE_SE_START_EVT

secondary configuration

4: BT 2. If the network distribution fails, the user can

3: AP+WEBSERVER

3 See 3.1 Bluetooth system logout description

3.5.1 Software module calling relationship

Please call this API again.

wm_wifi_prof_init

Delete service

wm_b t_wifi_cfg_init

data
transfer wm_wifi_prof_send_msg

tls_ble_server_app_u nregister

wm_ble_wifi_cfg_write_c b

tls_ble_server_start_service

WM_BLE_SE_CONNECT_EVT

wm_ble_server_u'nregister_server

41

APP W M_BLE_SERVER GATT_APIWIFI_PROF WIFI_APP

Machine Translated by Google

3.5.2 Example of application process

Indication: BleWiFi (W800 -> mobile APP) Characteristic UUID: 0x2ABC

Service uuidÿ 0x1824

4 API usage examples

Writeÿ BleWiFiÿÿÿ APP -> W800ÿCharacteristic UUIDÿ0x2ABC

Service definition:

Refer to the example wm_ble_server_demo_prof.c to add a custom service.

After the W800 Bluetooth function is powered on, it is disabled by default. If the user wants to use Bluetooth by default, please refer to the following instructions.

Feature value description uuid: 2902

3.5.3 Auxiliary Distribution Network Service

3.6 Users realize their own distribution network service

Feature value uuid: 0x2ABC Write & Indication

2. Scan to find the device

5. Key negotiation (returning the key)

1. broadcast

4. Secret key negotiation (send public key)

W800

3. Establish a connection

7. Return configuration results

APP

6. Send configuration information

42

Machine Translated by Google

At the position marked in step 2 in Section 4.1, call wm_ble_server_api_demo_init();

quit your own application.

4.2 Start up and run (exit) the sample server

The exit function of the program will be released automatically when the Bluetooth system exits. Of course, when the Bluetooth system is running, the user can also

Step 2, after the Bluetooth function is successfully turned on, the following callback function will be called, and the user can add his own application;

At the position marked in step 2 in Section 4.1, call wm_ble_server_api_demo_deinit(); the application

At the position marked in step 2 in Section 4.1, call wm_ble_client_api_demo_init();

Step 1, call in the tls_bt_entry() function to turn on the Bluetooth function, and turn off the Bluetooth system call demo_bt_destroy;

4.3 Start up and run (exit) the example client

4.1 Enable the Bluetooth system (exit)

43

Machine Translated by Google

enable bluetooth

[tls_ble_client_connect]

[tls_ble_server_send_indication]

analyze, enable

[Characteristic 0x2B11,GATT_CHAR_PROP_BIT_WRITE]

data reception

[Descriptor 0x2902]

enable scan

[demo_bt_enable]

create connection

Cyclic sending

Quit your application.

Use two demo boards to run 4.2 server demo and 4.3 client demo respectively. At this point, the Server side

The exit function of the Bluetooth system will be released automatically when the Bluetooth system exits. Of course, when the Bluetooth system is running, users can also

4.4 Data exchange function

It will continuously send data to the client, and the timing diagram is as follows:

At the position marked in step 2 in section 4.1, call wm_ble_client_api_demo_deinit(); application

enable bluetooth

[tls_ble_set_adv_data]

[tls_ble_adv]

enable sending [tls_ble_client_register_for_notification]

[tls_ble_client_write_characteristic]

[ble_client_demo_api_notify_callback]

Service ID:1902

[tls_ble_scan]
[tls_ble_server_add_service]

[tls_ble_server_add_characteristic]

[tls_ble_server_add_descriptor]

[demo_bt_enable]

[Characteristic 0x2B10,GATT_CHAR_PROP_BIT_INDICATE]

enable broadcast

Add service: 0x1910

Server

44

Server

service description

Client

Machine Translated by Google

tls_ble_uart_init(BLE_UART_CLIENT_MODE, 0x01, NULL)ÿ

2. Run a BLE client that supports multi-connection function, see 4.4 for the configuration mode

1. Run 7 BLE server devices separately, see 4.2 for the configuration mode

2, Client side, using UART1, default attribute (115200-8-N-1) transparent transmission: called at the mark of chapter 4.1

The W800 Bluetooth system acts as a central device and supports connection of up to 7 peripheral devices. An example configuration for this feature is as follows:

1, Server side, using UART1, default attribute (115200-8-N-1) transparent transmission: called at the mark of chapter 4.1

tls_ble_uart_init(BLE_UART_SERVER_MODE, 0x01, NULL)ÿ

4.5 Multi-connection function

The configuration is as follows:

Based on the data exchange between BLE server and BLE client, the transparent transmission function of UART is realized. Example of the function

Step 1, call in the tls_bt_entry() function to turn on the Bluetooth function, and turn off the Bluetooth system call demo_bt_destroy;

4.6 UART transparent transmission function

for data transmission via UART1.

4.7 Turn on the broadcast

Note: Limited to the performance of the controller side, when the client initiates a connection, the connection parameters must use the following intervals:

At this point, the client will initiate scanning and connection functions one by one until it successfully connects to 7 BLE servers.

After startup, the server starts broadcasting, and the client scans and connects to the server. After the connection channel is established, the user can

45

Machine Translated by Google

demo_ble_adv(1);//Connectable broadcast

The following callback function will be called, and the user calls the broadcast functionStep 2, after the Bluetooth function is successfully turned on
ÿ

46

Machine Translated by Google

Step 1, call in the tls_bt_entry() function to turn on the Bluetooth function, and turn off the Bluetooth system call demo_bt_destroy;

4.7.1 Default broadcast data configuration

4.8 Turn on the scan

Step 2. After the Bluetooth function is successfully turned on, the following callback function will be called, and the user calls the scan function

4.7.2 User-defined broadcast data settings

47

Machine Translated by Google

48

Machine Translated by Google

49

Machine Translated by Google

Mode. See wm_ble_server_api.c:

The connection state is divided into Slave mode and Master mode. The following two situations are described respectively. ;

4.9.1.1 Enable Broadcasting

4.9.1 Connection state in Slave mode

Step 3, [Note] At this time, the device side only supports non-connectable broadcasts.

4.9 Start broadcasting/scanning in connected state

Step 2, in Slave mode, see section 4.2. Run the demo example of Ble server, after running, the mobile phone

The terminal initiates scanning and connection operations. After the connection is successful, the device side is in Slave mode at this time, and the mobile phone side is in Master mode.

Call demo_ble_adv(2); // Unconnectable broadcast type is 2

Step 1, call in the tls_bt_entry() function to turn on the Bluetooth function, and turn off the Bluetooth system call demo_bt_destroy;

50

Machine Translated by Google

2) Unconnectable broadcast operations can be sent

demo_ble_scan(1);

5 Bluetooth AT command

4.9.2 Connection state in Master mode

4.9.1.2 Start scanning

Refer to 4.3 Start up and run the demo client function, after the client establishes a connection with the server:

1) Scanable operation;

Step 4 Refer to 4.4, just call the scanning API directly.

51

Machine Translated by Google

FILTER

OF

The Bluetooth system can be controlled through the Bluetooth AT command, and the Bluetooth AT command is divided into 4 categories. The host and controller part are used to configure

BLE SERVICE

CONTROLLER

STS

CREATE

Authentication function (this section partially contains the application layer).

PRM

BLE SERVER

OF THE

CHARACTERISTIC

START

abbreviation

BLE CLIENT

FLT

STOP

CTRL

POWER

CT

DELETE

BLESC

STATUS

CH

5.1 Brief description of Bluetooth AT commands

STT

Set the host protocol stack and controller protocol stack, the application layer part is used to configure the Bluetooth application program, and the test part is used to configure the Bluetooth

DESTORY

BLESV

The meaning of the abbreviation in the Bluetooth AT command is:

FLASH

PARAM

STP

meaning

POW

52

Machine Translated by Google

Function:

ACC

DISCONNECT

NTY

GETSTATUS

Format (ASCII):

SEND

TXPOWERGET

TEST

TXPOWERSET

+OK=<status>,<adapter_status><CR><LF><CR><LF>

uart_no: serial port index number, defined as follows:

INDICATION

IN

5.2.1.1 AT+BTEN

meaning

CONNECT

GS

Enable the Bluetooth system.

NOTIFICATION

TPS

AT+BTEN=<uart_no>,<log_level><CR>

DIS

parameter:

SND

TPG

ACCESS

TESTMODE

IN

5.2 Bluetooth system AT command

value

CONN

ENABLE

53

Machine Translated by Google

Others>1 failed

1

Output debug level log

adapter_status: command response result

Output api level log

5

value

value

meaning

0

return:

0 Controller stopped

Turn off log output

2

success

Output warn level log

4 Output event level log

value

uart1 The current version only supports UART1

controller running

Log_level: log output level, defined as follows:

status: command response result

Output verbose level log

meaning

1

meaning

Output error level log

3

0

6

1

54

Machine Translated by Google

+OK=<status>,<adapter_status><CR><LF><CR><LF>

Stop and log off the Bluetooth system.

0 Stop and unregister the host stack

AT+BTCFGHOST=[cmd]<CR>

AT+BTDES<CR>

Format (ASCII):

See BTEN parameter description

parameter:

parameter:

+OK<CR><LF><CR><LF>

5.3.1.1 AT+BTCFGHOST

Function:

Function:

value

5.3 Bluetooth host protocol stack AT command

5.2.1.2 AT+BTDES

cmd: host protocol stack control command, defined as follows:

Initialize and start the host protocol stack

Format (ASCII):

protocol stack.

meaning

Initialize and start or stop and unregister the host stack. Note that before starting the host protocol stack, the controller must be started first

1

55

Machine Translated by Google

Function:

AT+BTCTRLEN=<uart_no>,<log_level><CR>

5.4.1.2 AT+BTCTRLDES

value

Log_level: log output level, defined as follows:

Format (ASCII):

parameter:

Turn off log output

Stop and unregister the controller stack.

+OK<CR><LF><CR><LF>

meaning

value meaning

5.4.1.1 AT+BTCTRLEN

0

uart_no: serial port index number, defined as follows:

5.4 Bluetooth controller protocol stack AT command

Output error level log

Function:

Initialize and start the controller stack.

1

1

uart1, the current version only supports UART1

56

Machine Translated by Google

+OK<CR><LF><CR><LF>

5.4.1.3 AT+BTCTRLGS

(1<<3),

TLS_BT_CTRL_IDLE

(1<<5),

(1<<0),

none.

Get control status.

TLS_BT_CTRL_ENABLED =

TLS_BT_CTRL_BLE_ROLE_SLAVE =

Function:

(1<<1),

(1<<6),

TLS_BT_CTRL_BLE_ROLE_END =

AT+BTCTRLGS<CR>

AT+BTCTRLDES<CR>

+OK=<status><CR><LF><CR><LF>

(1<<2),

Format (ASCII):

Format (ASCII):

TLS_BT_CTRL_SLEEPING =

TLS_BT_CTRL_BLE_STATE_IDLE =

TLS_BT_CTRL_BLE_STATE_ADVERTISING = (1<<7),

(1<<4),

parameter:

status: control status, the return format is defined as follows:

TLS_BT_CTRL_BLE_ROLE_MASTER =

parameter:

=

57

Machine Translated by Google

TLS_BT_CTRL_BLE_STATE_INITIATING =

(1<<10),

0

parameter:

Function:

TLS_BT_CTRL_BLE_STATE_SCANNING =

+OK<CR><LF><CR><LF>

TLS_BT_CTRL_BLE_STATE_TESTING =

value

5.4.1.5 AT+BLETPS

TLS_BT_CTRL_BLE_STATE_STOPPING =

cmd: control command, defined as follows:

Format (ASCII):

Configure the transmit power for a specific type of BLE. The current version only supports the default power setting

Function:

(1<<9),

Set the sleep mode when the controller is idle. The current version does not support

Prevent the controller from entering sleep

5.4.1.4 AT+BTSLEEP

(1<<8),

meaning

AT+BLETPS=<type>,<level><CR>

1

(1<<11),

AT+BTSLEEP=<cmd><CR>

Allow the controller to go to sleep

Format (ASCII):

58

Machine Translated by Google

9

3

parameter:

specific connection handle

specific connection handle

2

10

5

value

6

specific connection handle

4

11

value

1

specific connection handle

broadcast

8

2

7

13

specific connection handle

1

scanning

4

specific connection handle

3

default power

Meaning dBm

+OK<CR><LF><CR><LF>

level: power index value.

4

type: ble type, defined as follows:

5

specific connection handle

meaning

specific connection handle

7

1

10

specific connection handle

0

59

Machine Translated by Google

4

11

specific connection handle

Function:

value

specific connection handle

6

Format (ASCII):

1

specific connection handle

broadcast

8

scanning

+OK=<level><CR><LF><CR><LF>

specific connection handle

3

default power

type: ble type, defined as follows:

specific connection handle

5

level: power index value. See 4.4.1.5

meaning

specific connection handle

7

5.4.1.6 AT+BLETPG

9

Get BLE specific type. The current version only supports default power gain

0

specific connection handle

specific connection handle

AT+BLETPG=?<type><CR>

2

10

parameter:

specific connection handle

60

Machine Translated by Google

+OK=<min>,<max><CR><LF><CR><LF>

Set/query transmit power index.

PCM over HCM

+OK<CR><LF><CR><LF>

AT+BTTXPOW=[?]<min>,<max><CR>

AT+BTSCOPATH=[?]<path><CR>

min: The minimum value of the power, the minimum value is 1, which means the minimum power is 1dBm, and the step size of each increase is 3db.

path: output path, defined as follows:

parameter:

parameter:

5.4.1.8 AT+BTSCOPATH

Function:

Function:

meaning

max: The maximum value of the power, the maximum value is 5, which means the maximum power is 13dBm, and the step size of each decrease is 3db.

5.4.1.7 AT+BTTXPOW

value

Format (ASCII):

Format (ASCII):

0

Specifies the sco link output path. The current version does not support

61

Machine Translated by Google

Format (ASCII):

5.4.1.9 AT+BTTEST

0

Set the bluetooth test mode.

Enter Bluetooth test mode

+OK<CR><LF><CR><LF>

5.5 Bluetooth application layer AT command

AT+BTTEST=<mode><CR>

1

mode: test mode, defined as follows:

1

value

parameter:

Internal Interface

The Bluetooth application layer is divided into three parts: device management, BLE server and BLE client.

Function:

Exit Bluetooth test mode

meaning

62

Machine Translated by Google

Function:

AT+BLEADV=<mode><CR>

parameter:

1

Format (ASCII):

0

parameter:

Function: configure BLE broadcast content.

For example, set broadcast data as 0x02 0x01 0x06 0x03 0x09 0x31 0x32,

+OK<CR><LF><CR><LF>

5.5.1.2 AT+BLEADATA

value

5.5.1.1 AT+BLEADV

meaning

AT+BLEADATA=<data><CR>

mode: control mode, defined as follows:

5.5.1 AT commands for device management

Format (ASCII):

data: Broadcast content, in HEX format. The maximum length is 62 characters, equivalent to 31 bytes in hexadecimal.

Control BLE broadcast sending and stopping.

Start BLE broadcast

+OK<CR><LF><CR><LF>

Stop BLE broadcasting

63

Machine Translated by Google

Function: Configure BLE broadcast parameters.

ap>,<adv_filter_policy>,<peer_addr_type>,<peer_addr><CR><LF><CR><LF>

Then the setting command is: AT+BLEADATA=02010603093132

Format (ASCII):

AT+BLEAPRM=<adv_int_min>,<adv_int_max>,<adv_type>,<own_addr_type>,<ch

parameter:

For the specific definition of the broadcast data format, see the description of the response core specification.

adv_int_min: Minimum broadcast interval, value range: 0x0020 ~ 0x4000. Note that when the broadcast type value is greater than

annel_map>,[adv_filter_policy],[peer_addr_type],[peer_addr]<CR>

adv_int_max: maximum broadcast interval, value range: 0x0020 ~ 0x4000. Note that when the broadcast type value is greater than

When equal to 3, the value range: 0Xa0~0x4000

5.5.1.3 AT+BLEAPRM

+OK=<adv_int_min>,<adv_int_max>,<adv_type>,<own_addr_type>,<channel_m

64

Machine Translated by Google

own_addr_type: BLE address type, defined as follows: (This value is automatically added by the protocol stack according to the value of the privacy attribute

ADV_CHNL_ALL

adv_int_min and adv_int_max fill in the hexadecimal format, such as 10, FF, etc.

1

ADV_TYPE_NONCONN_IND non-connectable non-scannable non-directed broadcast

value

1

value

3

BLE_ADDR_TYPE_RANDOM

0

ADV_CHNL_38

4

ADV_TYPE_IND Scannable Connectable Undirected Advertisement

5

1

7

ADV_TYPE_SCAN_IND Scannable Unconnectable Undirected Advertisements

Fill, the AT command can be filled with 0 by default)

meaning

ADV_TYPE_DIRECT_IND_LOW connectable slow directional broadcast

meaning

ADV_CHNL_37

When equal to 3, the value range: 0Xa0~0x4000

2

adv_type: broadcast type, defined as follows:

2

BLE_ADDR_TYPE_PUBLIC

meaning

4

channel_map: broadcast channel, defined as follows:

ADV_CHNL_39

ADV_TYPE_DIRECT_IND_HIGH connectable fast directional broadcast

value

65

Machine Translated by Google

0

value

Configure BLE scanning parameters.

meaning

3

5.5.1.4 AT+BLESCPRM

Function:

value

2

1

peer_addr: peer BLE address.

adv_filter_policy: filter, defined as follows:

peer_addr_type: peer BLE address type, defined as follows:

RANDOM

windows: scan windows. [0x0004, 0x4000], fill in the hexadecimal format, such as 10, FF, etc.

interval: scan interval. [0x0004, 0x4000]

ADV_FILTER_ALLOW_SCAN_WLST_CON_WLST

1

+OK<CR><LF><CR><LF>

parameter:

ADV_FILTER_ALLOW_SCAN_ANY_CON_WLST

0 PUBLIC

AT+BLESCPRM=<window>,<interval>,<scan_mode><CR>

ADV_FILTER_ALLOW_SCAN_WLST_CON_ANY

ADV_FILTER_ALLOW_SCAN_ANY_CON_ANY

meaning

Format (ASCII):

66

Machine Translated by Google

5.5.1.5 AT+BLESCFLT

5.5.1.6 AT+BLESCAN

In the scanning state, that is, the scanning window is always open.

Note: This command is currently not supported.

mode: operation mode, defined as follows:

The value of interval should be greater than or equal to windows. When the interval is equal to windows, it means that the controller is always in the

parameter:

filter: filter parameters, the usage is temporarily ominous,

parameter:

scan_mode: scan mode. [0,1] passive scan, active scan

+OK<CR><LF><CR><LF>

+OK<CR><LF><CR><LF>

AT+BLESCFLT=<filter><CR>

AT+BLESCAN=<mode><CR>

Format (ASCII):

Start or stop scanning.

Format (ASCII):

Configure scan filtering parameters.

Function:

Function:

67

Machine Translated by Google

start scan

+OK,<name><CR><LF><CR><LF> return when saving to flash

stop scanning

AT+&BTNAME=[!]<name><CR>

Format (ASCII):

AT+&BTNAME

meaning

Set the bluetooth name.

Format (ASCII):

Get the bluetooth name.

value

Function:

Function:

5.5.1.7 AT+&BTNAME

5.5.1.8 AT+&BTNAME

The scanning result is shown in the figure below:

parameter:

Name Bluetooth name, ASCII string. The maximum length is 16 bytes.

1

0

+OK,<CR><LF><CR><LF> Return when flash is not saved

68

Machine Translated by Google

5.5.1.9 AT+ BLESSCM

meaning

5.5.1.10 AT+BTSCM

Name Bluetooth name, ASCII string. The maximum length is 18 bytes.

value

4

7

parameter:

parameter:

CH is defined as:

2

+OK,<name><CR><LF><CR><LF>

+OK

1

parameter:

AT+ BLESSCM=CH

Frequency hopping, scan at 37, 38, 39 in sequence (default)

AT+ BTSCM=MODE

+OK

Format (ASCII):

Specify 38 channels to scan

Specify 39 channels to scan

Format (ASCII):

Specifies BLE to scan on a specific channel.

Function:

Specify 37 channels to scan

Function:

Configure the connectable discovery status of traditional Bluetooth.

69

Machine Translated by Google

0

This chapter describes how to use AT commands to create a BLE server step by step, and also provides an AT command to create a demo

parameter:

meaning

5.5.2 BLE server AT command

AT+BLECTSV=<uuid><CR>

+OK=<status><server_if><CR><LF><CR><LF>

7

2

value

Format (ASCII):

CH is defined as:

1

Create a server.

Frequency hopping, scan at 37, 38, 39 in sequence (default)

Function:

server_if: server interface index number.

Note: w800 supports up to 7 gatt apps. These 7 include server and client. The current distribution is:

connectable, discoverable

The demo server described in the chapter is the same.

5.5.2.1 AT+BLECTSV

status: command execution result, 0 is successful. Other, wrong.

connectable not discoverable

The function of server is AT+BLEDS=1/0, 1 is used to create, 0 is used to logout. Note the server and 4.2 created at this time

Invisible

uuid: unique id, double byte.

70

Machine Translated by Google

Function:

num_handles: The default value is 5.

5.5.2.2 AT+BLEADDSC

uuid: The uuid of this service.

Function:

uuid definition: https://www.bluetooth.com/specifications/assigned-numbers/

server_if: Create the interface number returned by the server.

inst_id: The default value is 1.

5.5.2.3 AT+BLEADDCH

The server supports 3, and the client supports 4.

parameter:

The character is assigned 2 handles, and a handle is assigned for each description added by the user.

+OK=<status><server_if><service_handle><CR><LF><CR><LF>

For the definition of handles: the user creates a service and assigns a handle value. Each time a user adds a

AT+BLEADDSC=<server_if>,<inst_id>,<uuid>,<num_handles><CR>

Note: w800 supports up to 8 services. Pay attention to TDS (uuid is 0x1824 for wifi distribution network). user

This uuid cannot be used.

Format (ASCII):

Add a service to server.

service_handle: The handle of the service value.

71

Machine Translated by Google

+OK=<status><server_if><service_handle><char_handle><CR><LF><CR><LF>

Function:

permissions: Read and write attributes, see 4.5.5.3 for specific definition values in hexadecimal format.

AT+BLEADDCH=<server_if>,<service_handle>,<uuid>,<prop>,<perm><CR>

5.5.2.4 AT+BLEADESC

service_handle: Add the handle returned by the service.

uuid: The uuid of this description service.

Format (ASCII):

status: command execution result, 0 is successful. Other, wrong.

permissions: Read and write attributes, see 5.5.9.3 for specific definition values in hexadecimal format.

server_if: Create the interface number returned by the server.

Add a characteristic value to the service.

properties: encryption authorization description, in hexadecimal format, see 5.5.9.3 for specific definition values.

parameter:

uuid: unique id.

+OK=<status><server_if><service_handle><desc_handle><CR><LF><CR><LF>

service_handle: Add the handle returned by the service.

Format (ASCII):

AT+BLEADESC=<server_if>,<service_handle>,<uuid>,<perm><CR>

server_if: Create the interface number returned by the server.

parameter:

Add a description value to the service.

72

Machine Translated by Google

Function:

status: command execution result, 0 is successful. Other, wrong.

5.5.2.5 AT+BLESTTSC

tran_type: BLE transmission type, the default value is 2.

desc_handle: The handle of the description service.

service_handle: Add the handle returned by the service.

server_if: Create the interface number returned by the server.

status: command execution result, 0 is successful. Other, wrong.

parameter:

AT+BLESTPSC=<server_if>,<service_handle><CR>

+OK=<status><server_if><service_handle><CR><LF><CR><LF>

Format (ASCII):

AT+BLESTTSC=<server_if>,<service_handle>,<tran_type><CR>

Function:

Out of service.

Format (ASCII):

Start the service.

5.5.2.6 AT+BLESTPSC

73

Machine Translated by Google

service_handle: Add the handle returned by the service.

server_if: Create the interface number returned by the server.

server_if: Create the interface number returned by the server.

parameter:

AT+BLEDESSV=<server_if><CR>

parameter:

AT+BLEDELSC=<server_if>,<service_handle><CR>

+OK=<status><server_if><service_handle><CR><LF><CR><LF>

Format (ASCII):

+OK=<status><server_if><service_handle><CR><LF><CR><LF>

Format (ASCII):

Log out of the demo server.

Delete service.

Function:

Function:

status: command execution result, 0 is successful. Other, wrong.

5.5.2.8 AT+BLEDESSV

5.5.2.7 AT+BLEDELSC

service_handle: Add the handle returned by the service.

status: command execution result, 0 is successful. Other, wrong.

74

Machine Translated by Google

status: command execution result, 0 is successful. Other, wrong.

addr: Bluetooth mac address of the client.

server_if: Return value when created.

server_if: Create the interface number returned by the server.

+OK=<status><server_if><conn_indication><CR><LF><CR><LF>

parameter:

+OK=<conn_id><CR><LF><CR><LF>

parameter:

AT+BLESVDIS=<server_if>,<addr>,<conn_id><CR>

+OK=<status><server_if><CR><LF><CR><LF>

AT+BLESCONN=[!?]<server_if>,<addr><CR>

Format (ASCII):

Format (ASCII):

Disconnected client.

Connect client. This feature is not currently supported

5.5.2.10 AT+BLESVDIS

Function:

Function:

5.5.2.9 AT+BLESCONN

conn_id: connection id.

75

Machine Translated by Google

conn_indication: 1, connected, 0 disconnected

server_if: Create the interface number returned by the server.

addr: Bluetooth mac address of the client.

parameter:

server_if: Create the interface number returned by the server.

AT+BLESIND=<server_if><conn_id><attr_handle><data><CR>

+OK=<status><CR><LF><CR><LF>

parameter:

Format (ASCII):

Send indication.

status: command execution result, 0 is successful. Other, wrong.

Function:

attr_handle: the return value when creating a feature value

data: the string entered by the user.

5.5.2.11 AT+BLESSING

status: command execution result, 0 is successful. Other, wrong.

conn_id: The id number when creating the connection.

76

Machine Translated by Google

Format (ASCII):

5.5.3 BLE client AT command

Read and write operations return values.

status: command execution result, 0 is successful. Other, wrong.

data: the string entered by the user.

attr_handle: the return value when creating a feature value

Function:

Create a client with the specified uuid.

5.5.2.12 AT+BLESRSP

conn_id: The id number when creating the connection.

Function:

server_if: Create the interface number returned by the server.

5.5.3.1 AT+BLECCT

parameter:

The function of client is AT+BLEDC=1/0, 1 is used to create, 0 is used to logout. Note the client and 4.3 created at this time

The demo client described in the chapter is the same.

+OK=<status><CR><LF><CR><LF>

This chapter describes how to use AT commands to create a BLE client step by step, and also provides an AT command to create a demo

AT+BLESRSP=<server_if><conn_id><attr_handle><data><CR>

77

Machine Translated by Google

parameter:

Format (ASCII):

+OK=<status><client_if><CR><LF><CR><LF>

Connect to the server.

status: command execution result, 0 is successful. Other, wrong.

AT+BLECCT=<uuid><CR>

Function:

5.5.3.2 AT+BLECCONN

conn_id: connection id.

Format (ASCII):

The server supports 3, and the client supports 4.

addr: Bluetooth mac address of the server.

Note: w800 supports up to 7 gatt apps. These 7 include server and client. The current distribution is:

client_if: Create the interface number returned by the client.

status: command execution result, 0 is successful. Other, wrong.

+OK=<status><client_if><conn_id><CR><LF><CR><LF>

parameter:

client_if: Create the interface number returned by the client.

uuid: unique id.

AT+BLECCONN=<client_if>,<addr><CR>

78

Machine Translated by Google

Format (ASCII):

Format (ASCII):

Scan server's service list.

Return the list of services.

Function:

Function:

5.5.3.4 AT+BLECGDB

5.5.3.3 AT+BLECSSC

status: command execution result, 0 is successful. Other, wrong.

list: service list:

conn_id: The id returned when connecting to the client.

conn_id: The id returned when connecting to the client.

parameter:

+OK=<list><CR><LF><CR><LF>

parameter:

+OK=<status><CR><LF><CR><LF>

AT+BLECSSC=<conn_id><CR>

AT+BLECGDB=<conn_id><CR>

79

Machine Translated by Google

Function:

conn_id: return value when creating a connection

+OK=<status><conn_id><attr_handle><register_or_not><CR><LF><CR><LF>

attr_handle: The characteristic handle value of notification in the service list.

5.5.3.5 AT+BLECRNTY

AT+BLECRNTY=<client_if>,<addr>,<attr_handle>,<conn_id><CR>

Function:

addr: mac address.

Format (ASCII):

5.5.3.6 AT+BLECDNTY

client_if: Create the interface number returned by the client.

rcegister_or_not: indicates registration or cancellation.

Register for events that respond to server notifications.

parameter:

80

Machine Translated by Google

+OK=<status><conn_id><attr_handle><register_or_not><CR><LF><CR><LF>

Read and write characteristicisc.

write operation

AT+BLECDNTY=<client_if>,<addr>,<attr_handle>,<conn_id><CR>

Function:

value meaning

Format (ASCII):

5.5.3.7 AT+BLECACH

register_or_not: Indicates registration or cancellation.

mode: operation mode, defined as follows:

Unregisters registered notification response events.

conn_id: return value when creating a connection

parameter:

attr_handle: The characteristic handle value of notification in the service list.

Read operation+OK=<status><conn_id><length><data><CR><LF><CR><LF>

addr: mac address.

AT+BLECACH=<mode>,<conn_id>,<handle>,<auth_req>,[data]<CR>

Write operation+OK=<status><conn_id><CR><LF><CR><LF>

client_if: Create the interface number returned by the client.

parameter:

Format (ASCII):

0

81

Machine Translated by Google

handle: handle for reading and writing characteristic values.

parameter:

conn_id: The id returned when connecting to the client.

+OK=<status><client_if><conn_id><reason><CR><LF><CR><LF>

1

Format (ASCII):

AT+BLECDIS=<client_if>,<addr>,<conn_id><CR>

read operation

Disconnect.

If initiated by the APP side, see reason code definition, 4.5.5.2

Function:

reason: If this command is initiated by 800, the value of reason is always 0;

5.5.3.8 AT+BLECDIS

addr: mac address.

conn_id: The id returned when connecting to the client.

data: The data to be written, in string format, only valid for write operations.

auth_req: Default is 0.

client_if: Create the interface number returned by the client.

82

Machine Translated by Google

Format (ASCII):

Data exchange function.

mode: operation mode, defined as follows:

logout client,.

AT+BLEDC=1. You can see that the server is constantly sending data to the client. See 4.4 for specific servcie description

+OK=<mode><CR><LF><CR><LF>

parameter:

Function:

server role, a demo board assumes the client role. After starting the Bluetooth function, run AT+BLEDS=1,

Creating BLE server and BLE client based on AT commands requires two demo boards, one of which is responsible for

AT+ONESHOT=<mode><CR>

5.5.3.9 AT+BLECDES

5.5.4 Example of server client communication based on AT command

Format (ASCII):

client_if: The interface value assigned at creation time.

Start or stop the distribution network service.

parameter:

5.5.5.1 AT+ONESHOT

Function:

+OK=<status><client_if><CR><LF><CR><LF>

AT+BLECDES=<client_if><CR>

5.5.5 BLE assisted WiFi distribution network AT command

83

Machine Translated by Google

5.5.6 Traditional Bluetooth audio AT commands

meaning

3

1

Set to enable or disable the AUDIO sink function.

Enable the sink function

Start UDP distribution network

Notice:

parameter:

AT+ BTAVS=<state><CR>

1

Start SoftAP+WebServer network configuration

Logout, Bluetooth turns off broadcasting. If you need to configure the network again, please start the Bluetooth distribution network again.

value

0

Function:

Unregister the sink function

2

Format (ASCII):

0

value

Stop distribution network

4

+OK<CR><LF><CR><LF>

Start SoftAP+Socket distribution network

After starting the Bluetooth distribution network, the user can use the mobile phone APP to configure the WiFi information. After the network distribution is successful, the network distribution service will automatically

state: Enable the AV SINK logout function, defined as follows:

Start Bluetooth distribution network

meaning

84

Machine Translated by Google

Format (ASCII):

0

state: enable logout of SPP server/client function, defined as follows:

Set to enable or cancel the HAND FREE function.

Enable the HAND FREE function

+OK<CR><LF><CR><LF>

parameter:

Function:

meaning

Cancel the HAND FREE function

AT+ BTSPPS/ BTSPPC=<state><CR>

5.5.7 Traditional Bluetooth hands-free phone AT commands

value

Format (ASCII):

0

state: enable the logout HAND FREE function, defined as follows:

Set to enable or disable the SPP server/client function.

Logout of the SPP server/client function

Enabling the SPP server/client function

parameter:

5.5.8 SPP AT command

Function:

meaning

+OK<CR><LF><CR><LF>

AT+ BTHFP=<state><CR>

1

value

1

85

Machine Translated by Google

BTA_GATT_INVALID_ATTR_LEN

0x000C

5.5.9.1 GATT Status Definition

BTA_GATT_INSUF_AUTHORIZATION

BTA_GATT_REQ_NOT_SUPPORTED

BTA_GATT_INSUF_ENCRYPTION

0x0005

0x000E

BTA_GATT_INVALID_HANDLE

BTA_GATT_NOT_FOUND

0x0000

BTA_GATT_INSUF_RESOURCE

0x0007

0x0009

0x0010

BTA_GATT_WRITE_NOT_PERMIT

BTA_GATT_INSUF_KEY_SIZE

0x0002

0x000B

0x80

BTA_GATT_INSUF_AUTHENTICATION

BTA_GATT_ERR_UNLIKELY

0x0004

0x000D

BTA_GATT_INVALID_OFFSET

BTA_GATT_UNSUPPORT_GRP_TYPE

0x0006

0x000F

5.5.9 Status code definition:

0x0008

0x0011

BTA_GATT_OK

BTA_GATT_PREPARE_Q_FULL

BTA_GATT_NO_RESOURCES

BTA_GATT_READ_NOT_PERMIT

BTA_GATT_NOT_LONG

0x0001

0x000A

BTA_GATT_INVALID_PDU

0x0003

86

Machine Translated by Google

BTA_GATT_DUP_REG

0x8d

BTA_GATT_WRONG_STATE

BTA_GATT_INVALID_CFG

BTA_GATT_AUTH_FAIL

BTA_GATT_CANCEL

0x86

0x8f

BTA_GATT_BUSY

BTA_GATT_ENCRYPED_NO_MITM

0x81

BTA_GATT_PRC_IN_PROGRESS

0x88

0x8a

0x91

BTA_GATT_CMD_STARTED

BTA_GATT_CONGESTED

0x83

0x8c

0xFD

0xFF

BTA_GATT_PENDING

BTA_GATT_ALREADY_OPEN

0x85

0x8e

BTA_GATT_MORE

BTA_GATT_CCC_CFG_ERR

0x87

0x90

BTA_GATT_INTERNAL_ERROR

0x89

0x92

BTA_GATT_DB_FULL

BTA_GATT_SERVICE_STARTED

BTA_GATT_OUT_OF_RANGE

BTA_GATT_ERROR

BTA_GATT_NOT_ENCRYPTED

0x82

0x8b

0xFE

BTA_GATT_ILLEGAL_PARAMETER

0x84

87

Machine Translated by Google

0x06

Connection Accept Timeout Exceeded

Success

0x04

0x03

Connection Timeout

Command Disallowed

0x0e

Unknown HCI Command

0x05

Synchronous Connection Limit To A Device

Connection Limit Exceeded

Connection Rejected due to Limited Resources 0x0d

Connection Rejected due to Unacceptable

0x11

Unknown Connection Identifier

Memory Capacity Exceeded

Exceeded

BD_ADDR

Hardware Failure

0x07

0x0b

Unsupported Feature or Parameter Value

Page Timeout

0x08

0x0c

0x10

5.5.9.2 Reason code definition:

Connection Rejected Due To Security Reasons

0x00

Authentication Failure

0x09

0x01

PIN or Key Missing

0x0a

0x0f

0x02

ACL Connection Already Exists

88

Machine Translated by Google

0x18

Role Change Not Allowed

0x12

Connection Terminated By Local Host

0x15

0x19

0x1d

0x21

0x13

Pairing Not Allowed

SCO Offset Rejected

0x1a

0x1f

Unsupported LMP Parameter Value /

0x23

0x14

0x17

SCO Air Mode Rejected

Unsupported LL Parameter Value

Remote Device Terminated Connection due to

Unknown LMP PDU

0x1c

LMP Response Timeout / LL Response Timeout 0x22

Power Off

Unsupported Remote Feature / Unsupported

Invalid LMP Parameters / Invalid LL Parameters 0x1e

LMP Error Transaction Collision

Invalid HCI Command Parameters

Unspecified Error

Remote User Terminated Connection

Repeated Attempts

LMP Feature

Remote Device Terminated Connection due to

0x16

SCO Interval Rejected

0x20

Low Resources

0x1b

89

Machine Translated by Google

0x2b

0x34

0x38

0x24

Pairing With Unit Key Not Supported

Instant Passed

QoS Rejected

Reserved

0x35

Link Key cannot be Changed

Different Transaction Collision

0x2c

Insufficient Security

Role Switch Pending 0x32

Secure Simple Pairing Not Supported By Host

0x25

Reserved

0x2e

Reserved Slot Violation

Connection Rejected due to No Suitable Channel 0x39

0x37

0x27

QoS Unacceptable Parameter

0x30

Role Switch Failed

0x28

Channel Classification Not Supported

0x31

Extended Inquiry Response Too Large

LMP PDU Not Allowed

Reserved

Host Busy – Pairing

Encryption Mode Not Acceptable

0x29

Parameter Out Of Mandatory Range

Requested QoS Not Supported

0x2a

0x2d

0x33

0x36

0x26

0x2f

90

Machine Translated by Google

#define WM_GATT_PERM_READ

Controller Busy

0x3e

0x3d

#define WM_GATT_PERM_READ_ENCRYPTED (1 << 1) /**< bit 1 - 0x0002 */

(1 << 4) /**< bit 4 - 0x0010 */

Directed Advertising Timeout

0x3f

#define WM_GATT_PERM_WRITE_ENCRYPTED (1 << 5) /**< bit 5 - 0x0020 */

(1 << 2) /**< bit 2 - 0x0004 */

#define WM_GATT_CHAR_PROP_BIT_BROADCAST (1 << 0) /**< 0x01 */

(1 << 1) /**< 0x02 */

0x3b

/** Attribute permissions */

#define WM_GATT_PERM_WRITE_SIGNED

(1 << 2) /**< 0x04 */

Connection Terminated due to MIC Failure

(1 << 0) /**< bit 0 - 0x0001 */

#define WM_GATT_PERM_WRITE_SIGNED_MITM (1 << 8) /**< bit 8 - 0x0100 */

Connection Failed to be Established

#define WM_GATT_PERM_READ_ENC_MITM

/** definition of characteristic properties */

Found

#define WM_GATT_CHAR_PROP_BIT_READ

Unacceptable Connection Parameters

MAC Connection Failed

#define WM_GATT_PERM_WRITE

0x3a

5.5.9.3 Definition of Permissions and properties

#define WM_GATT_PERM_WRITE_ENC_MITM (1 << 6) /**< bit 6 - 0x0040 */

#define WM_GATT_CHAR_PROP_BIT_WRITE_NR

0x3c

(1 << 7) /**< bit 7 - 0x0080 */

91

Machine Translated by Google

#define WM_GATT_CHAR_PROP_BIT_AUTH

6.1 Enable and exit the Bluetooth system

AT+ONESHOT=4 //Enable distribution network service

#define WM_GATT_CHAR_PROP_BIT_INDICATE

This chapter combines specific examples to give the specific operation specifications of Bluetooth AT commands. The black screenshot is the response to the AT command.

//Enable the bluetooth systemAT+BTEN=1.0

#define WM_GATT_CHAR_PROP_BIT_NOTIFY

(1 << 7) /**< 0x80 */

6 Example of Bluetooth AT command operation

6.2.1 Turn on the Bluetooth function and enable the network distribution service

#define WM_GATT_CHAR_PROP_BIT_WRITE

(1 << 6) /**< 0x40 */

6.2 Enable auxiliary WiFi distribution network service

(1 << 5) /**< 0x20 */

AT+BTDES

(1 << 4) /**< 0x10 */

AT+BTEN=1.0

6.1.2 Exit the Bluetooth system

(1 << 3) /**< 0x08 */

#define WM_GATT_CHAR_PROP_BIT_EXT_PROP

6.1.1 Enable Bluetooth system

At this time, you can use the APP to perform network configuration operations; note that after the network configuration is successful, the system will automatically log out of the network distribution service.

92

Machine Translated by Google

AT+BTDES

6.3.3 Add service

//Add a feature value description with uuid 2902

//Exit the bluetooth system

AT+BLECTSV=9999

6.3.5 Add feature value description

AT+BLEADESC=4,40,2902,11

AT+ONESHOT=0 //Exit distribution network service

//Create a server with uuid 9999

6.3.2 Create server

//Add uuid as the characteristic value of 2abc

6.2.2 Exit the auxiliary WiFi distribution network service and log off the Bluetooth system

AT+BTEN=1.0

AT+BLEADDCH=4,40,2abc,28,11

6.3.1 Enable Bluetooth system

6.3.4 Adding eigenvalues

interoperability.

//1824uuid, dedicated for Bluetooth distribution network.

AT+BLEADDSC=4,1,1826,5

This chapter describes how to create a BLE server step by step through AT commands and communicate with the Nrf connect APP on the mobile phone.

6.3 BLE server operation example

//Add service with uuid 1826

93

Machine Translated by Google

6.3.6 Start the service

//enable broadcast

6.3.7 Configure broadcast data

6.3.8 Start broadcasting

//Start the service

The broadcast data on the mobile phone shows:

6.3.9 The mobile phone starts scanning

//Set broadcast content, broadcast type and name field

AT+BLESTTSC=4,40,2

AT+BLEADV=1

Nrf connect scan results:

AT+BLEADVDATA=0201060309574D2D30363A30313A3335

94

Machine Translated by Google

6.3.10 Initiate a connection on the mobile phone side

In the figure below, UUID:0x1826 is the service we created.

Created service description.

Click the CONNECT button, then w800 will display:

That is, the MAC address of the mobile phone is 60C25D5A4CC1 and the connection is successful. After the connection is successful, you can see us on the phone side

95

Machine Translated by Google

Click Transport Discovery to see the property values and descriptions we created

96

Machine Translated by Google

Send a string to the mobile phone, the display is as follows: BLE, the current system time, the HEX format shown below

6.3.11 Enable the Indication function on the mobile phone side

6.3.12 Obtaining characteristic value data by mobile phone profile

Click the upward arrow on the right side of 0X2ABC, which represents the characteristic value write operation, and W800 will return the received content.

Click the up and down arrows on the right side of 0X2ABC again, the shape is now, which means stop sending indication.

Click the up and down arrows on the right side of 0x2abc to enable the indicate operation. After that, W800 will

97

Machine Translated by Google

6.3.13 Read the descriptor on the mobile phone side

String:

At this time, the received content will be displayed on the W800 side:

Click the read operation on the right side of the descriptor, the down arrow means to read the description content, W800 returns 12345678 words

The APP displays the received return value:

98

Machine Translated by Google

6.3.14 Disconnect from mobile phone

AT+BLESTPSC=4,40 //Stop the service whose handle is 40

6.3.15 Stop service

AT+BLESVDIS=4,047EB5A65FCB,4 //Disconnect from the server,

6.3.16 Delete service

AT+BLEDELSC=4,40

//client_if 4, address 047EB5A65FCB, ID 4

99

Machine Translated by Google

6.3.17 Logout server

6.4.1 Create a server on the mobile phone

AT+BTDES

Perform scanning, connection, and read characteristic value operations. The mobile terminal still uses the Nrf connect APP.

6.3.18 Log out of Bluetooth service

property value and then enable the broadcast function:

This chapter introduces the step-by-step creation of the BLE Server on the mobile phone, the configuration of the characteristic value is the description, and the start of the broadcast. W800

AT+BLEDESSV=4 //logout the server whose client_if is 4

The process of configuring Nrf connect GATT server is shown in the figure below. It is necessary to add a service, configure the characteristic value unique write attribute and attribute

6.4 BLE client operation example

100

Machine Translated by Google

101

step twostep one

6.4.2 Enable Bluetooth on W800

//Enable the bluetooth system

6.4.3 W800 create client

AT+BLECCT=8888

AT+BTEN=1.0

//Create a client with uuid 8888

step three step four

Machine Translated by Google

At this point, you can see the device name huawei, which is the broadcast content sent by the mobile phone.

//Scan the server's service list

AT+BLESCAN=1

6.4.7 W800 Scanning Service List

Example of a successful connection:

Example of a connection error, at which point the connection operation can be repeated.

// start scanning

6.4.4 W800 start scanning

AT+BLECCONN=4,71C1608D025C //connect to mobile phone

6.4.6 W800 connect to server

AT+BLECGDB=4

AT+BLESCAN=0

6.4.8 W800 read service list

// read service list

//stop scanning

AT+BLECSSC=4

6.4.5 W800 stops scanning

102

Machine Translated by Google

6.4.12 W800 log out of Bluetooth service

AT+BTEN=1.0

6.4.10 W800 Disconnect

6.4.9 W800 read characteristic value

AT+BTDES

AT+BLECDIS=4,63573EA5A2F7,4

// Read the handle value of interest. This example reads

6.5 Switch example server

6.4.11 W800 logout client

59. At this time, the return value is: the length is 3, and the content is a hexadecimal string 363456

6.5.1 Enable Bluetooth system

AT+BLECDES=4

AT+BLECACH=1,4,59,0

103

Machine Translated by Google

AT+BLEDC=0

AT+BLEDS=0

6.5.3 Stop demo server

6.6.3 Stop the example client

AT+BLEDS=1

6.6.2 Enable example client

AT+BLEDC=1

6.5.2 Enable demo server

AT+BTEN=1.0

AT+BTEN=1.0

6.6.1 Enable Bluetooth system

6.7.1 Enable the Bluetooth system

6.6 switch example client

AT+BTDES

6.7 Switch multi-connection example client

AT+BTDES

6.5.4 Exit the Bluetooth system

6.6.4 Exit the Bluetooth system

104

Machine Translated by Google

AT+BLEDCMC=0

6.8.3 Stop UART transparent transmission

6.7.3 Stop demo client

AT+BLEUM=2,1 //Enable the client end of UART transparent transmission, use UART1 transparent transmission

AT+BLEDCMC=1

6.8.2 Enable UART transparent transmission Server/Client

AT+BLEUM=1,1 //Enable the server side of UART transparent transmission, use UART1 transparent transmission

After enabling the Bluetooth function, you can directly operate the AT command. See AT command chapter

6.7.2 Enable multi-connection demo client

AT+BTEN=1.0

6.9 Example of Traditional Bluetooth Audio Operation

6.8.1 Enable the Bluetooth system

AT+BTDES

6.8 Switch UART transparent transmission

AT+BLEUM=0,2 //Close UART transparent transmission mode on client side

6.8.4 Exit the Bluetooth system

AT+BTDES

AT+BLEUM=0,1 //Close UART transparent transmission mode on server side

6.7.4 Exit the Bluetooth system

105

Machine Translated by Google

6.12W800 Test Mode

After enabling the Bluetooth function, you can directly operate the AT command. See AT command chapter

6.12.1 W800 enters test mode

The current device can perform data read and write operations.

For the SPP server mode, after enabling it, the user can use the Bluetooth serial port and other test tools on the mobile phone to send

6.10 Operation example of traditional Bluetooth hands-free phone

certification test.

AT+BTTEST=1 //Enter the bluetooth test, at this time you can use the test tool directly through the configured uart port

After enabling the Bluetooth function, you can directly operate the AT command. See AT command chapter

6.12.2 W800 Exit Signaling Test

W800 supports real-time access to test mode, which can be used by customers to test RF performance and controller function test and certification

AT+BTTEST=0 //Exit the test mode, at this time the host protocol stack controls the controller.

6.11 SPP operation example

Operate the controller.

106

Machine Translated by Google

107

Machine Translated by Google

